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Abstract: The rapid spread of invasive plant species (IPS) over several decades has led to numerous 

impacts on biodiversity, landscape and human activities. Early detection and knowledge on their 

spatiotemporal distribution is crucial to better understand invasion patterns and conduct appropri-

ate activities for landscape management. Therefore, remote sensing provides great potential for de-

tecting and mapping the spatial spread of IPS. The study presents a mapping of IPS (Reynoutria 

japonica and Impatiens glandulifera) over the last decade, on two sites located in the central Pyrenees 

in the southwest of France, from very high resolution RGB aerial photographs. A supervised classi-

fication based on the random forest algorithm was performed using pixel attributes. The original 

spectral bands (RGB) were used, to which vegetation indices and textures were added to improve 

the detection. The classification models yielded a mean prediction accuracy (F-score) of 0.90 (0.87 to 

0.92) at the site 1 and 0.87 (0.81 to 0.91) at the site 2. Results show that the expansion of IPS is closely 

related to the presence of corridors (e.g., roads, power lines) and to environments disturbed by hu-

man activity such as land clearing. 
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1. Introduction 

Over several decades, biological invasions by plants have increased considerably 

leading to numerous impacts on biodiversity, landscapes and human activities as well as 

significant economic and ecological costs [1]. Often, long-term invasions lead to a drastic 

change in ecosystem with the structure and functioning alteration due to a significant 

competition with native species [2]. Thus, invasive plant species (IPS) have become an 

issue all over the world, to the point that they are considered as one of the major causes 

of the decline of biodiversity [3]. 

Early detection and knowledge of their spatio-temporal distribution are crucial to 

better understand invasion patterns and conduct appropriate activities for landscape 

management [4]. Therefore, remote sensing (RS) provides great potential for detecting 

and mapping the spread of IPS [5]. RS high resolution aerial photographs have been 

widely used since the last decade. However, the detection of IPS can be tricky as it gener-

ally requires high spectral and/or spatial submetric resolution images and that plants dif-

fer from surrounding species and constitute aggregated and dense populations [6]. In re-

cent years, several studies have provided that RS using hyperspectral sensors and/or very 

high resolution (VHR) imagery, is an effective tool to detect IPS [5,6]. 
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This study presents a mapping of IPS (i.e., Reynoutria. Japonica and Impatiens glandu-

lifera), using VHR ortho-rectified RGB aerial photographs, over the last decade in the cen-

tral Pyrenean foothills. The aims are to: (i) produce an approach for detecting IPS; (ii) 

characterize their spatio-temporal dynamics; (iii) highlight the environmental and human 

factors that influence their spread. 

2. Materials and Methods 

2.1. Study areas 

The study was carried out on two sites, Salles-et-Pratviel (42°55’29”N – 00°38’58”E) 

and Cierp-Gaud (42°50’06”N – 00°36’13”E), located along the Pique valley in the central 

Pyrenees in the southwest of France (Figure 1). The sites, which cover an area ranging 

from 20 to 44 ha, are entrenched in the Pyrenean foothills. The landscape is composed of 

meadows and stream banks in the valley bottom while deciduous and coniferous forests 

as well as some shrubs dominate the hillsides. Agricultural activity is mainly composed 

of permanent meadows for grazing and forage harvesting. 

 

Figure 1. Location map of the study sites. ‘S-P’, Salles-et-Pratviel; ‘C-G’, Cierp-Gaud. 

2.1. Target species 

Reynoutria. Japonica Houtt. (Figure 1a) has a highly developed root system composed 

of rhizomes that produce annual aerial stems up to 3 m in height. Its stems are hollow, 

reddish and semi-ligneous with marked knots while the leaves are large, oval-triangular 

and truncated at the base with a sharp point at the apex and creamy-white flowers [7]. 

Impatiens glandulifera Royle (Figure 1b) is a highly annual herb that can reach up to 2.5 m 

in height with pink flowers and roots reaching a depth of 10-15 cm. Its stems are reddish, 

multi-branched and hollow with knots. Its leaves are glabrous, oblong, ovate to elliptical 

and whorled with margins sharply serrated [8]. The two species are preferentially associ-

ated with banks and alluvium of streams, as well as on the edge of ditches or areas fre-

quently disturbed. 

 

Figure 2. Reynoutria japonica (a) and Impatiens grandulifera (b) during the flowering stage. 
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2.3. Data collection 

A set of four VHR ortho-rectified RGB aerial photographs were acquired from the 

National Institute of Geographic and Forest Information (IGN) for each site. Images were 

taken between July and August and cover the last decade at an interval of 3 years. Their 

spatial resolution is 20 cm (i.e., 2019, 2016) and 50 cm (i.e., 2013, 2010). Additionally, 

ground truth data was collected in September 2020 at each site, in order to locate IPS, 

using a Trimble GEO7X dGPS (Acc.1 cm XY). The data was used for sampling IPS on the 

images and for field validation of the classification maps. Before 2019, ground truth data 

was impossible to obtain, therefore Google Street View was used to assess the presence of 

IPS according to expert opinions in addition to the field data collected. 

2.4. Image data analysis 

The data processing was carried out from Orfeo ToolBox (OTB) which is an open-

source project for remote sensing and developed in France by the National Centre for 

Space Studies (CNES). For this study, OTB was applied through the QGIS software with 

versions 7.2.0 and 3.14.1, respectively. The workflow of image processing and classifica-

tion is summarized in Figure 3. 

 

Figure 3. Workflow for RGB imagery processing and analysis of the IPS spatio-temporal dynamics 

over the last decade. 

2.4.1. Derived RGB variables 

For detecting and mapping IPS, several vegetation indices and texture images were 

derived from the original spectral bands (RGB). Nine vegetation indices (CIVE, TGI, 

VDVI, NGRDI, MGRDI, RGBVI, ExG, RGRI) were selected among the most commonly 

used as well as height textures (Energy, Entropy, Correlation, Inverse Difference Moment, 

Contrast, Cluster Shade, Cluster Prominence and Haralick Correlation) for each band of 

the original images [9]. 

2.4.2. Sample design 

To calibrate and validate the classification, seven classes were established (Figure 3). 

Each class was randomly sampled with ~110 polygons (3 m x 3 m) by photo-interpretation 

and field survey. In each polygon, a set of points was randomly generated, one point cor-

responding to one pixel. The total pixel sampling is 20,000 for images at 20 cm resolution 

and 8,000 for those at 50 cm. If possible, sampling is similar between years. Then, the sam-

pled points were randomly separated into two independent groups to calibrate (50%) and 

validate (50%) the classifiers. 

2.4.3. Image classification 
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To map IPS, the machine learning algorithm Random Forest (RF) was used in a pixel-

based approach [10]. This algorithm is a non-parametric classifier, which combines an en-

semble of decision trees in a bagging approach. To assess the benefits of each variable, 

several classifications were tested according to three levels: (i) the three original bands 

(RGB); (ii) the benefit analysis where one variable at a time was added to the three original 

bands; (iii) the combination of variables with the best performance added to the three 

original bands. 

2.4.4. Classification accuracy assessment 

Classification accuracy was evaluated from a confusion matrix calculated from the 

class assignments. The performance criteria selected to assess the classification accuracy 

are the User’s Accuracy (UA), Producer’s Accuracy (PA) and F1-score (F1) [11]. PA corre-

sponds to the frequency at which the real features on the field are correctly represented 

on the classified map while UA corresponds to the frequency at which the class on the 

map is actually present in the field. F1 combines UA and PA and corresponds to their 

harmonic mean. 

3. Results and discussion 

3.1. Classification accuracy 

The best results were obtained with the model composed of the original bands (RGB), 

CIVE-VDVI-NGRDI vegetation indices and Energy-Entropy textures. Classification accu-

racy of target species calculated from the validation dataset is presented in Figure 4. Clas-

sification models yielded a mean prediction accuracy (F1-score) of 0.90 (0.87 to 0.92) at S-

P and 0.87 (0.81 to 0.91) at C-G. In this study, an accuracy of ~85% was considered suffi-

cient to interpret the occupation changes of IPS [12]. 

Over the decade, the area occupied by IPS is on average 2.49 ha at S-P and 5.03 ha at 

C-G (Figure 4). However, the occupancy rate between S-P and C-G differs significantly, 

with a coefficient of variation of 3.7% and 44.7%, respectively. If the spread of IPS at S-P 

is low (+3.1%), the area occupied at C-G decreases highly (-42.3%), especially between 2013 

and 2016. This can be explained by trees planting on cleared land previously colonized by 

IPS and landscape closure in some areas. Regular IPS clearing is also carried out, explain-

ing locally their absence in some years. 

 

Figure 4. Evolution of the IPS areas from 2010 to 2019 and classification accuracy at Salles-et-Prat-

viel (a) and Cierp-Gaud (b). ‘UA’, User Accuracy; ‘PA’, Producer Accuracy; ‘F1’, F1-score. 

3.2. Spatial pattern of invasion 

Classification maps allows to distinguish three types of preferential sites for the oc-

currence of IPS: (i) near wetlands (i.e., stream banks and ponds), (ii) along drainage 

ditches and (iii) along corridors (i.e., roads, power lines). Among these environments, 

those resulting from alteration by human activity are the most commonly observed at both 

sites. 

Figure 5 presents the spatial pattern of IPS over the last decade at C-G where the 

spatial dynamic is the most important. Distribution maps show a non-random occurrence 

of IPS, whose dynamic appears to be mainly driven by anthropogenic factors. Thus, IPS 
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mainly developed along a disturbance corridor that corresponds to a road associated on 

the east side with a drainage ditch and a power line (Figure 5 site 3). A second corridor 

corresponding to a power line also represents a preferential axis of colonization. Several 

isolated patches of IPS have also appeared locally as a results of land clearing. However, 

over time these patches tend to decrease due to the development of shrubs, trees and es-

pecially brambles (Rubus fruticosus Linn.) that lead to landscape closure (Figure 5 site 1-

2). 

IPS spread at both sites shows that the colonization of an environment following land 

clearing is fast, with the appearance of an aggregated and dense population after 2-3 years. 

This rapidity can be explained by a brutal removal of native vegetation creating an open 

space without competition between species. 

 

Figure 5. IPS spread pattern at Cierp-Gaud. Terrestrial images (Google Street View) illustrate the 

IPS temporal dynamics highlighted from the aerial images for three typical situation. 

4. Conclusion 

Mapping of IPS from VHR RGB images has given satisfactory results (i.e., UA and 

PA rates often above 85-90%) and has allowed to highlight their spatial distribution pat-

terns. Spread of IPS can be linked to environmental and human factors that are favorable 

to them (i.e., wetlands, drainage ditches, corridors). 

Human activity appears to play a major role in the dispersion of IPS [13], particularly 

through disturbance corridors (i.e., roads, power line) which generate favorable condi-

tions for their colonization and establishment [14]. Presence of corridors leads to the re-

moval of native species, soil disturbance, high light, modification of hydrological pro-

cesses, becoming a pathway favorable for dispersal of IPS [14]. Thus, corridors generate 

edge effects and landscape fragmentation, leading to an abrupt transition between habi-

tats and a modification of ecosystem with a resources redistribution and interactions 

among plant communities [15]. However, it appears that in some cases IPS which have 

colonized cleared areas (e.g., I glandulifera) are competing with the development of native 

species such as brambles and tend to lose ground. 

This study identified the conditions where IPS are likely to spread. Knowing poten-

tial locations of spread and understanding the dynamic of IPS invasion can allow manag-

ers to determine the consequences of landscape changes and prioritize site-specific control 

strategies. 
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However, RGB images present low spectral resolution which can be limiting when 

patch size is smaller than pixel resolution or when the target is weakly distinguished from 

the background. Therefore, the use of multispectral images (i.e., >3 bands) acquired by 

unmanned aerial vehicles at sub-metric spatial resolution would improve IPS detection, 

especially for isolated and sparse patches. It would then be interesting to interview man-

agers and owners about their IPS management strategies in order to clarify the interpre-

tations of this study obtained from the image analysis. 
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