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Abstract: Retaining the balance between high productivity and quality while efficiently managing 

available resources is one of the biggest challenges facing the agricultural sector. As a possible so-

lution to overcome these challenges and obstacles, precision agriculture has emerged in recent years. 

Among the promising solutions that precision agriculture offers, is the use of edge computing de-

vices for monitoring and acquiring data in the rural environment, processing information locally 

and in real time. Computer Vision and Artificial Intelligence, more specifically referred to as Deep 

Learning, have also being applied recently in agriculture for different tasks such as image classifi-

cation, object detection and semantic segmentation. However, there is a challenge and limitation in 

transferring this technology to more affordable platforms to process large quantities of data. There-

fore, in this work, we explored the use of Computer Vision and Deep Learning applied to the object 

detection task in edge devices, specifically the Raspberry PI 4 platform, without hardware accelera-

tion. We decided to apply this methodology for weed detection, since weeds are currently one of 

the pests that result in greatest loss of productivity in agriculture, and also have rapidly developed 

resistance to commercial herbicides. Also, in order to evaluate the performance gain for real-time 

weed detection on the Raspberry Pi platform, quantizaion of the deep neural network architectures 

using TensorFlow Lite was tested. The experimental results suggests that the proposed methodol-

ogy is functional, and it was achieve real time weed detection on Raspberry Pi 4 platform, making 

it possible to reproduce the experimental results on similar edge devices. 
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1. Introduction 

World population is expected to achieve 10 billion by 2050, according with FAO 

(Food and Agriculture Organization of the United Nations). Population increase will 

boost agriculture demand as well as add pressure on natural resources [1]. In this scenario 

agroindustry is a sector that represents key importance for every country, thus, it is es-

sential to maintain a high crop yield and yet manage with efficiency and sustainability 

the resources used for crop production. 

A factor that directly affects crop yield is the infestation of weeds and pests, since 

many weed species have become resistant for commercial herbicides, especially glypho-

sate [2], causing crops losses and depreciation. Data from EMBRAPA (Brazilian Agricul-

ture Research Corporation), indicated that weed plants appear as one of the factors that 

most affect agricultural productivity. Damaging the planted crop either by competing for 

resources such as sun, water and nutrients, or by allelopathy, which is the ability of plants 
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to produce substances that are harmful to other plants and consequently causing loss of 

production yield. In cases where no weed control is done, losses can reach more than 90% 

of production, with control the average is 13 to 15% loss in production [3]. 

Therefore, there is an urge to apply new technologies to enable weed spot elimina-

tion, whether it is mechanical, electrical or chemical in a controlled amount of herbicide. 

As a possible solution for the challenge of identifying weeds for local elimination deep 

learning associated with computer can be applied. Deep Learning belongs to the Artificial 

Intelligence and Machine Learning fields of research, and achieved remarkable results re-

cently on renowned computer vision datasets for tasks such image classification 

[4],[5],[6],[7] and object detection [8], [9], [10]. 

However, two major issues appear when deploying deep learning architectures, first 

the large amount of data necessary for training the model, second the necessity of a pow-

erful hardware enhanced with GPU (Graphical Processing Unit) to allow real time weed 

detection. To address these issues, the tested architectures were trained on an image da-

taset which consists of 5 weed species resistant of the major herbicides used in Brazil. The 

image dataset was composed of 2000 images, where 1500 images were used for training 

and 500 images were used for validation which is a reduced dataset size. Second it was 

explored a hybrid approach, where the deep learning architecture was trained using the 

cloud resources on Google Collab and after training, the weights were quantized using 

post training quantization on the Tensorflow Lite Converter.  

Results indicate that it is possible to perform real time weed detection (FPS =>30) on 

the Raspberry Pi 4 platform. The SSD MobileNet V2 FPNLite 320x320 model, quantized 

to int8 achieved the best detection results, with an FPS varying of 65 to 70. To the best of 

our knowledge our approach is the first to fully deploy deep learning models on the Rasp-

berry Pi 4 platform and achieve real time weed detection without hardware acceleration.  

2. Materials and Methods 

The materials and methods are organized as follows: The data preparation and aug-

mentation are described in Section 2.1. In Section 2.2, the selection of the deep neural net-

works models for object detection and training are described. Finally, in Section 2.3 the 

quantization and deployment of quantized models on the raspberry pi are described. 

2.1. Data preparation and Augmentation 

In order to train and evaluate the performance of the deep learning models an image 

dataset was created. The dataset consists of 5 weed species resistant to the major herbi-

cides used commercially in Brazil, especially glyphosate. The species are Capim-Azevém 

(Lolium Multiflorum), Buva (Conyza Bonariensis), Capim-Amargoso (Digitaria Insularis), 

Capim-Pé-de-Galinha (Eleusine Indica) and Caruru Palmeri (Amaranthus Palmeri). Pictures of 

each weed are shown on figure 1. 
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Figure 1. Sample images of weed species resistant of herbicides. (a) Capim-Azevém, (b) Buva, (c) 

Capim-Amargoso, (d) Capim pé de Galinha, (e) Caruru. (Source: Designed by the authors). 

Data augmentation was used to create the dataset. This is an important step, because 

it increases the number of images for training, as well as provides difficulty scenarios, 

which are important to validate the model robustness for classification and object detec-

tion. The transformations applied for augmentation were rotation, horizontal and vertical 

flip, the addition of image blurring and noise. By the end of data augmentation, the image 

dataset was composed of 2000 images, where 500 images were used for validation, being 

100 images for each weed class, and 1500 images used for training, being 300 images for 

each class. Posteriorly, all images were cropped using the labelImg tool [11], used to select 

and save the weed species of interest inside every image. 

After image labeling and cropping a CSV (Comma-separated values) format file was 

created based on the XML files from training and testing dataset. The CSV files contain 

information regarding image height and width, weed class, number and coordinates of 

the weeds inside the image. The CSV were used to generate test and train files in TFRecord 

file format. The TFRecord is Tensorflow own binary storage format and it is used as basis 

input data for training and validation of the deep learning models. Once all data prepara-

tion was finished the next step was to select the deep learning models.  

2.2. Selection of the Deep Neural Networks for Object Detection and Models Training 

Object detection is one of the lines of research and development of computer vision, 

in which video and image processing techniques are used, along with algorithms to per-

form the extraction of characteristics and, from these characteristics, detect an object of 

interest. In this work the deep learning architectures were selected from Tensorflow Hub 

[12], which is a Google library containing a series of applied neural network architectures 

and Machine Learning algorithms in various tasks involving, image classification and de-

tection, speech recognition, semantic segmentation, etc. 

The object detection models available in Tensorflow Hub, were originally trained and 

tested in the Microsoft COCO (Common Objects in Context) image dataset, [13]. Origi-

nally the COCO dataset contains 90 classes of common objects and has been trained in 

approximately 2.5 million labeled images, also it is widely recognized and used by the 

scientific community in the field of computer vision and artificial intelligence.  

Speed was the main architectures selection factor, followed by mAP (Mean Average 

Precision). The mAP is the major accuracy metric used on COCO dataset. Based on these 

parameters the selected models were SSD MobileNet V2 FPNLite 320x320[14], SSD Mo-

bileNet V2 FPNLite 640x640[14] and SSD ResNet50 V1 640x640[15]. In table 1 it is shown 

information regarding the selected models, such as the speed for processing the algorithm 

in milliseconds (ms), the average precision obtained by these algorithms in the COCO 

dataset (COCO mAP) and the type of output generated by the model, in this case all ar-

chitectures create a box (boxes) around the detected object. 

Table 1. Deep Learning Object Detection Architectures Selected. 

Model Name Speed (ms) COCO mAP Outputs 

SSD MobileNet V2 

FPNLite 320x320 
22 22.2 Boxes 

SSD MobileNet V2 

FPNLite 640x640 
39 28.2 Boxes 

SSD ResNet50 V1 

FPN 640x640 (Reti-

naNet50) 

46 34.3 Boxes 

Two important aspects to be emphasized is that although the inference speed (clas-

sification or object detection) of these networks is small, in the range of milliseconds, the 
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networks were tested on devices with higher processing and graphical processing units 

compared to the Raspberry Pi 4. Therefore, many of the architectures available on the 

Tensorflow Hub are unfeasible to apply on Raspberry. Second not all models available on 

the Tensorflow Hub support quantization, therefore this information was also taken into 

consideration to select the deep learning models. 

The training of the architectures was performed on Google Collab, which is a free 

online platform that enables the training of artificial intelligence algorithms using Goog-

le's cloud processing. All models were trained for 20000 iterations, and used Tensorflow, 

which is an open-source platform for machine learning. [16]. 

2.4. Models Quantization and Deployment on the Raspberry Pi 4 

After training, post-training quantization was used. Post-training quantization is as 

a conversion technique to reduce model size while also improving CPU and hardware 

accelerator latency, with little degradation in model accuracy [17]. The process of training 

and quantizing a model to implement it into a hardware less powerful can be considered 

a hybrid technique, beneficial to edge computing devices. In figure 2 it is shown a repre-

sentation of the process described, where the steps of training and conversion are done in 

the server a more powerful computing device, and the inference is done on the client, that 

can be a smartphone and in our case is the Raspberry Pi 4 platform.  

 

Figure 2. Model training, quantization and deployment pipeline (Source: Tensorflow Lite). 

The device used in the experiments is the Raspberry Pi 4, integrated with a Raspberry 

Pi camera board v.1. The board has a Quad core Cortex-A72 (ARM v8) 64-bit 1.5GHz SoC 

processor, 4 GB of DDR4 RAM, 2 coolers were installed along with thermal sinks to pre-

vent overheating in the processor. Figure 3 shows the Raspberry 4 device and components 

used in this study. 

 

Figure 3. Raspberry Pi 4 platform used in experiments (Source: Designed by the authors). 

3. Results and Discussion 
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In this section, the results of quantization and deployment of the deep learning mod-

els on the Raspberry Pi are provided. Section 3.1 discusses the effects of quantization on 

the tested architectures. In Section 3.2 the experimental results of SSD MobileNet 320x320 

on the Raspberry are provided.  

3.1. Effects of Quantization of Neural Networks for Object Detection 

For the experiment, the object detection models were quantized into 3 formats: 

float32, which is the standard size generated for a tflite file, float16 and int8. In table 2 it 

is shown the dimension as well as the difference of quantized tflite files. 

Table 2. Quantization results and types applied on the Models. 

Model Name Float32 Float16 Int8 

SSD MobileNet V2 

FPNLite 320x320 
11.238 KB 5.702 KB 3.675 KB 

SSD MobileNet V2 

FPNLite 640x640 
11.837 KB 6.001 KB 4.274 KB 

SSD ResNet50 V1 

FPN 640x640 (Reti-

naNet50) 

198.152 KB 99.153 KB 51.234 

The Int8 type was the lightest quantization for all trained architectures, where SSD 

MobileNet V2 FPNLite 320x320 has the smaller value, almost a third of the size of the 

float32 model. SSD ResNet50 V1 640x640 also decreased significantly from approximately 

198 MB (Megabytes) to 51 MB.  

Although all models can be deployed on the Raspberry Pi, only the SSD MobileNet 

V2 FPNLite 320x320 achieved real time object detection results. Despite the weight size of 

SSD MobileNet V2 FPNLite 640x640 is slightly bigger than MobileNet V2 320x320, the 

model was not capable to surpass the 30 FPS mark. First because it demands a higher 

camera resolution, the minimum resolution that the Raspberry Pi camera can work is 

640x480 pixels, which worked for the MobileNet V2 320x320, however, for the 640x640 

model it does not, second the image processing task is higher for the 640x640 pixels mod-

els, which decreased the performance significantly. On the next section results and per-

formance of real time weed detection using the SSD MobileNet V2 FPNLite 320x320 are 

sohwn. 

3.2. Weed Detection Results Using Quantized MobileNet 320x320 

Originally the tflite file has a format float32, during the tests with the float32 file it 

was obtained from 32 to 35 frames per second. Next, a float16 quantized file was tested, 

with the file in float16, 35 to 38 frames per second were obtained. Finally, a quantized tflite 

file of int8 was tested. The int8 file obtained 66 to 70 frames per second, the best results. 

Experimental results are shown in figure 4. 

 

Figure 4. Real Time Weed Detection Results: (a) Capim pé de Galinha weed detection with float32 

quantization, (b) Capim pé de Galinha weed detection with float16 quantization (c) Capim pé de 

Galinha weed detection with int8 quantization. (Source: Designed by the authors). 
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5. Conclusions 

In this work, the use of the Raspberry Pi platform as an edge device for computer 

vision applications involving the weed detection was explored. The experiment proved 

to be functional, which is an important advance, since deep neural network architectures 

are generally implemented in devices with higher processing capacity than Raspberry and 

at higher cost. The possibility of using this device as a low-cost, real-time weed detection 

system allows even small farmers to have access to a technology that uses computer vision 

and artificial intelligence. 

The SSD MobileNet V2 FPNLite 320x320 implemented in Raspberry, had low accu-

racy in detection, where the network repeatedly confused the classes of weeds. Therefore, 

for future work, it is intended to explore more complex networks with greater average 

precision and to verify whether it is possible to implement them on the Raspberry Pi plat-

form. 

The methodology used proved to be functional to detect weeds in real time, therefore 

it is possible to extend the applications of this study to other edge devices with hardware 

characteristics similar to Raspberry Pi, such as smartphones for real time weed and dis-

eases detection. 
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