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1. Introduction
• Shape Memory Steel (SMS) is a kind of smart material that combines the

structural properties of steel with the Memory Shape Effect.

• The Memory Shape Effect (SME) is the property thanks to which the material
can be deformed beyond its elastic limit and shaped back to its original state
due to a phenomena called Martensitic Transformation, and it is thanks to the
unique changes in the microstructure of the SMS.

• The martensitic transformation is created by submitting the material to stress
and reversed by a heating process.
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1. Introduction
The SMS is being studied to be used in many applications to take advantage
of its properties, being some examples:

• Pipeline coupling in petrochemical plants, using the SME to ensure tight fittings.

• Earthquake damper, to exploit the energy dissipation property intrinsic of the SME.

• Structural use in reinforced concrete beams, in prestressed applications.
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2. Objectives
The aim of this current work is to:

• Characterize the microstructure of the SMS.

• Identify the activation temperature of the alloy.

• Study its electrochemical behavior and compare the results with those of a
reference commercial steel.
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3. Experimental Setup

5

3.1 Materials

3.2 Experimental Techniques

The materials used will be:

• Shape Memory Steel (SMS): a Fe based alloy that has the
Shape Memory Properties described previously. It is composed
of Fe-28Mn-6Si-5Cr.

• Carbon Steel: a Fe based alloy with a low percentage of C.

• Microstructure characterization will be performed with Light Optical Microscope
(LOM) and Scanning Electron Microscope (SEM).

• Activation temperatures were assessed with DSC techniques were done with a
heating rate of 2.5 ⁰C min⁻¹ in a stream of N₂ (50 ml/min), in a 40 μL Al crucible.

Carbon steel sample

Fe-28Mn-6Si-5Cr sample

Ø = 32,6 mm

Ø = 15 mm



3.2 Experimental Techniques

• Electrochemical tests were performed with a three electrode electrochemical cell
(RE = Hg/HgO ; CE = Ti-MMOx). The test surface was 0,636 cm2 and was tested
with an Autolab potentiostat.

• The used electrolyte is a 0.1 M NaOH + 0.1 M KOH solution (pH = 13).

• Passivated samples will be attacked with Cl- until pitting by the addition of
incremental amounts of a NaOH 0.1 M + KOH 0.1 M + NaCl 5M solution.
o OCP measurements were performed to check the passivity process during 7 days.

o Voltammetry tests were performed from -0.15 VOCP to +1.5 VOCP with a scan rate of 2 mV s-1 .
Samples were stabilized for an hour before performing the test.

o EIS test were performed with a frequency range being 10 kHz to 1 mHz, 7 points for each
decade, and with an amplitude of 5 mVRMS. The measurements were performed every 12
hours.
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4. Results
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Regarding the LOM images, the following
observations of the microstructure can be made:

• ‐Austenite phase is found, with clearly defined
uniform grains that are randomly oriented.

• Deformation twins are also spotted on the inside
of the grain.

• Within the ‐austenite grains, dark parallel lines
can be defined as -martensite.

LOM micrograph showing a general view of the SMS alloy

4.1 Microstructural characterization



4.1 Microstructural characterization
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SEM observations confirm the identification of both microstructures previously
characterized, while at the same time highlighting the following:

• The -martensite phase is composed of regularly spaced individual plates with
irregular thickness.

𝛾
𝜀

SEM micrograph showing a general 
view of the SMS alloy

• It is also notable the
descent in the - martensite
percentage after being
submitted to a heating
process with a temperature
over 160 ⁰C for 5 minutes.

SEM micrograph showing the alloy after 
heating T > 160 ⁰C



4.2 Thermal analysis
• Characterization of the temperatures

in which the SMS experiences
thermal-induced transformations
from -martensite (hcp structure) to
‐austenite (fcc structure).

• The transformation from -
martensite to ‐austenite starts at As,
finishes at Af, and the same is applied
to the reverse transformation, -
martensite to ‐austenite , that starts
at Ms and finishes at Mf.
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DSC test of heating and cooling of the Fe-28Mn-6Si-5Cr

DSC curves of heating and cooling of the Fe-28Mn-6Si-5Cr

‐austenite (fcc structure) -martensite (hcp structure)

-martensite → ‐austenite 

‐austenite → -martensite 



4.3 Electrochemical characterization

• In the case of the Fe-28Mn-6Si-5Cr, the OCP
starts at -20 mV, increasing rapidly and
reaching pseudo-stability in the first 25 hours,
with values in this stage between 200 mV and
280 mV.

• Similarly, in the case of the carbon steel, the
first measurements return a value of -45 mV,
with a similar pseudo-stable stage that
reaches values between 185 mV and 280 mV
after the first 25 hours.
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OCP chart of the SMS and Carbon Steel, in pH 13 
solution for 7 days

4.3.1 OCP results



• Ecorr of the SMS is slightly more
anodic than the Ecorr of the carbon
steel.

• The SMS presents a peak associated
with the Mn electrochemical activity.
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4.3.2 Potentiodynamic (PD) curves
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• After 7 days of immersion, there is a
decrease in the current density
indicative of passivation in both
samples.

• The Mn activity peak continues
present in the SMS sample.
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4.3.2 Potentiodynamic (PD) curves
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4.3.3 EIS results
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72 hours of immersion

• EIS test results of the Fe-28Mn-
6Si-5Cr are compared with
those of the carbon steel.

• Impedance increase is
observed with immersion time
in both samples, indicative of a
passivating process, in
agreement with the OCP
evolution.

• Initially, impedance is higher in
the carbon steel sample,
although at higher immersion
times the value of the SMS has
higher values.

1 h of immersion

1 h of immersion

72 h of immersion 72 h of immersion
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• This tendency is still present
until the end of the immersion
time.

• No further evolution is observed
after 120 hours of immersion
time in neither of the samples.

• Two time constants can be
appreciated from the Bode plots.
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4.3.3 EIS results
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• Electrical equivalent circuit (EEC)
used:

• Fitting results are accurate in
both materials, as shown in the
corresponding Bode and Nyquist
diagrams.

R1 = 65.97 kΩ·cm2

C1 = 45.56 μF ·cm2

R2 = 175,29 kΩ·cm2

C2 = 26.94 μF ·cm2

R1 = 16.31 kΩ·cm2

C1 = 16.96 μF ·cm2

R2 = 518,96 kΩ·cm2

C2 = 46.38 μF ·cm2

Experimental and fitted data using the proposed EEC of the SMS and carbon 

steel, in NaOH 0.1 M + KOH 0.1 M, at 1 hour of immersion time. The best fitting 
parameters are inserted in the Bode plots

4.3.3 EIS results

Carbon steel
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The 2 constants are interpreted as:

• 1st time constant: it is located in the high frequency range, and is related to the
corrosion process. Thus R1 corresponds to the charge transfer resistance (Rct) and C1 is
the double layer capacitance.

• 2nd constant: it is located in the low frequency range, and is tied to the redox
phenomena for the Fe2+  Fe3+ reaction

Proposed 2 time constant fitting model with named elements

4.3.3 EIS results
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1st constant:

• Rct: After a slight descent until the 90th hour, the
Fe-28Mn-6Si-5Cr value increases substantially. It
shows passivation in long time periods. The
carbon steel increases the value until the 80th hour
and afterwards remains stable. This evolution
suggests a faster passivating kinetics for carbon
steel.

• Cdl: In both materials it is shown a decrease on the
value, in agreement with a descent in the active
surface.

• Those results are consistent with the generation of
the passive layer.

4.3.3 EIS results
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2st constant:

• Rredox: in both materials the value increases, so the Fe2+  Fe3+ reaction is getting slower.

• Credox: The value stays practically constant.

4.3.3 EIS results
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4.3.4 Effect of chloride additions

0 200 400 600 800 1000 1200 1400

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

P
o
te

n
ti
a
l 
[V

 v
s
 S

C
E

]

Time (s)

 Carbon Steel

0 2000 4000 6000 8000 10000

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

 Fe-28Mn-6Si-5Cr

W
E

(1
).

P
o
te

n
ti
a
l 
(V

)

Time (s)

Passivity recovery of the SMS after 
going from [0.00 M] Cl- to [0.15 M] Cl-

Passivity breakdown of the SMS after 
going from [0.15 M] Cl- to [0.75 M] Cl-

Passivity breakdown of the carbon steel 
after going from [0.10 M] Cl- to [0.15 M] Cl-

NaOH 0.1 M + KOH 0.1 M + NaCl 0.1 M

Addition of 1 ml of a NaCl 5M solution 
reaching a concentration of 0.15 M

Addition of 3 ml of a NaCl 5M solution 
reaching a concentration of 0.15 M

NaOH 0.1 M + KOH 0.1 M

Addition of 14.5 ml of a NaCl 5M solution 
reaching a concentration of 0.15 M

NaOH 0.1 M + KOH 0.1 M + NaCl 0.15 M

The carbon steel is more sensitive to the chloride additions. The passive layer is
broken with a 0.15 M concentration. In the case of the SMS, concentration for the
passive layer breakdown is 5 times higher.

OCP evolution with immersion time and chloride additions
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5. Conclusions
The drawn conclusions in this study are:

• The morphological characterization shows that two phases can be clearly 
distinguished, ‐austenite and -martensite.

• Thermal studies determined the activation temperature, being As = 123.8 ⁰C, 
Af = 141.5 ⁰C, Ms = 4.2 ⁰C and Mf = -11.8 ⁰C.

• The electrochemical study shows that:
o Passivation occurs in both materials.

o EIS measurements corroborate the passive state of both materials, with a higher Rct

values in the SMS case.

o Chloride addition studies show that the SMS withholds a 5 times higher concentration of 
Cl- ion than that of the carbon steel.
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