ECB 2021 The 1st International Electronic Conference on Biomedicine 01-26 JUNE 2021 | ONLINE

Green synthesis, characterization and bioactivity of Ag-nanoparticles from algal polysaccharide of *Chnoospara minima*

Lakshika R. Keerthirathna^{1,*}, Kalpa W. Samarakoon², Sameera R. Samarakoon³, Rajitha K. Rathnayaka ³, and Dinithi C. Peiris ¹

 ¹ Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka ;
² The KDU Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawela Defence University, Kandawala Road, Rathmalana;
³ Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90 Cumaratunga Munidasa Mawatha, Colombo, Sri Lanka

* Corresponding author: rangee9183@gmail.com

Abstract:

The synthesis of nanoparticles using biogenic material as a part of green chemistry is a recent attraction of nanotechnology. The current research aimed to test the cytotoxic efficacy of silver nanoparticles (Ag-NPs) synthesized by extract of polysaccharide from marine algae Chnoospora minima against Human Breast Cancer (MCF-7) Cells in vitro. The extracted polysaccharide was analyzed by Fourier-transform infrared spectroscopy (FTIR). Biosynthesized silver nanoparticles (Ag-NPs) were characterized using UV-spectrophotometry, dynamic light scattering (DLS), Zeta Potential, Scanning electron microscopy (SEM) and Energy Dispersive X-ray (EDX). We demonstrated the dosedependent cytotoxic effect of biosynthesized Ag-NPs in Human Breast Cancer cells (MCF-7) using Sulferhodamine B assay (SRB assay). An absorption peak at 420 nm in UV-vis spectrum proven the formation of Ag-NPs; DSL analysis confirmed the formed particles are within the nano scale with Z-Average of 84 d.nm and Zeta potential was -18.5 mV. SEM imaging showed biosynthesized Ag-NPs have a spherical shape with low aggregation and the EDX spectrometers confirmed the presence of elemental silver signal of the biosynthesized Ag-NPs. SRB assay demonstrated that the green synthesized Ag-NPs inhibit proliferation of breast cancer cell lines (MCF-7). The innovation of the present study is that the green synthesis of NPs, which is simple and cost effective, provides stable nano-materials and can be an alternative for the large-scale synthesis of silver nanoparticles.

Keywords: Ag-NPs; Chnoospara minima; FT-IR, DLS, SEM, EDX, Cytotoxicity

Results and Discussion

Extraction of Polysaccharide

Chnoospora minima Marian Brown Algae Dried Powdered **Depigmented (acetone)** Hot water extraction (90–95 °C for 3–4 h) **Filtered** Concentrated Cooled **Precipitated (95% ethanol) Centrifugation (1200rpm)** Dried

ECB 2021

Biosynthesis of Silver nano-particle using extracted polysaccharide

Sample and Ag-Np solution after 15 min & 60 min

Characterization of synthesized Ag-NPs

Fourier Transform Infrared Spectroscopy (FTIR) Analysis

FT-IR spectra of the polysaccharides extracted from *C. minima*

FT-IR spectra of the biosynthesized Ag-NPs

500 cm⁻¹ and 2000 cm⁻¹ - fingerprint region for bond vibrational modes of polysaccharides.

Sharp peak at 1039 cm^{-1–} C-O-C stretching vibrations

of the glycosidic bridges in polysaccharides.

1220 cm⁻¹ and 1270 cm⁻¹ – bending vibrations of C-O-S and stretching vibrations of S=O bonds in sulfate groups

UV-Visible Spectral Analysis

UV-Visible Spectrum of Ag-NPs after 60 minutes

Dynamic Light Scattering (DLS) Analysis

DLS technique - Identify the size distribution profile of Ag-NPs

8 Ag-NPs was in nanometer range Intensity (Percent) 6 5 Polydisperse 3 mixture 2 1 0 0.1 10 100 1000 10000 1 Z- Average of Size (d.nm) 84 d.nm Record 1244: Algal polysaccaride 1 Record 1245: Algal polysaccaride 2 Record 1246: Algal polysaccaride 3 Size Distribution of Ag-NP soulution

Size Distribution by Intensity

ECB

Scanning Electron Microscopy (SEM) Imaging

SEM images of Biosynthesized Ag-NPs

Ag-NPs - well dispersed - low aggregation - spherical in shape

Energy Dispersive X-Ray (EDX) Analysis

EDX analysis -Qualitative and quantitative status of the elements involved in the formation of nanoparticles

High peaks of Si and O – glass (SiO₂) slide used to mount the sample

Zeta Potential Analysis

Zeta Potential Analysis of Ag-NP solution

ECB 2021

Bioactivity of Ag-NPs VS the Polysaccharide

The cytotoxicity of biologically synthesized Ag-NPs and crude polysaccharide extract were compared

Cell line	Polysaccharide based Ag nanoparticles (IC50)	Crude polysaccharide (IC50)
MCF-7	3.921 μgmL ⁻¹	> 200 µgmL⁻¹

 $\rm IC_{50}$ values of the polysaccharide extract and biosynthesized Ag-NPs at 48 h post incubation

```
IC<sub>50</sub> value < 10 μgmL<sup>-1</sup> – cytotoxic,
```

IC₅₀ value > 200 μgmL⁻¹ – non-cytotoxic

In-vitro Anti-cancer activity Sulforhodamine B (SRB) assay - MCF-7

The sulforhodamine B (SRB) assay – quantify cell density, based on the measurement of cellular protein content

Biosynthesized Ag-NPs shows potent cytotoxic activity on MCF-7 cell line with increasing concentration

SRB assay results - *in -vitro* cytotoxicity effect of biosynthesized Ag-NPs against the MCF-7 at different concentrations

Silver nanoparticles are **effectively synthesized** from a silver nitrate solution through a simple green route using the **Polysaccharide extract of Sri Lankan Marian brown algae** *Chnoospora minima*.

Further characterization of the prepared solution shows particles in **nano range** with **spherical shape**, are **well dispersed** and with an **average diameter of 84nm**.

Biosynthesized Ag-NPs show IC₅₀ value of **3.921** μgmL⁻¹ compared to >200μgmL⁻¹ of the polysaccharide extract and cytotoxic activity on MCF-7 cell line with increasing concentration

Acknowledgments

University of Sri Jayewardenepura GRANT NO: ASP/01/RE/SCI/2017/49

Instrument Centre

Faculty of Applied Sciences University of Sri Jayewardenepura

Analytical Services Division, Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama, Sri Lanka

