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 Abstract: Atmospheric profiles are key inputs in correcting the atmospheric effects of thermal in-16 

frared (TIR) remote sensing data for estimating Land Surface Temperature (LST). This study is a 17 

first insight into the feasibility of using the Weather Research and Forecasting (WRF) model to 18 

provide high-resolution vertical profiles for LST retrieval. WRF numerical simulations were per-19 

formed to downscaling NCEP Climate Forecast System Version 2 (CFSv2) reanalysis profiles, using 20 

two nested grids with horizontal resolutions of 12 km (G12) and 3 km (G03). We investigated the 21 

use of these profiles in the atmospheric correction of TIR data applying the Radiative Transfer 22 

Equation (RTE) inversion single-channel approach. The MODerate resolution atmospheric 23 

TRANsmission (MODTRAN) model and Landsat 8 TIRS10 (10.6–11.2 µm) band were taken for the 24 

method application. The accuracy evaluation was performed using in situ radiosondes in Southern 25 

Brazil. We included in the comparative analysis the NASA’s Atmospheric Correction Parameter 26 

Calculator (ACPC) web-tool and profiles directly from the NCEP CFSv2 reanalysis. The atmos-27 

pheric correction parameters from ACPC, followed by CFSv2, had better agreement with the ones 28 

calculated using in situ radiosondes. When applied into the RTE to retrieve LST, the best results 29 

(RMSE) were, in descending order: CSFv2 (0.55 K), ACPC (0.56 K), WRF G12 (0.79 K), and WRF 30 

G03 (0.82 K). The finds suggest that increasing the horizontal resolution of reanalysis profiles does 31 

not particularly improve the accuracy of RTE-based LST retrieval. However, the WRF results are 32 

yet satisfactory and promising, encouraging further assessments. We endorse the use of the 33 

well-known ACPC and also recommend the NCEP CFSv2 reanalysis profiles for TIR remote sens-34 

ing atmospheric correction and LST single-channel retrieval. 35 

Keywords: Land Surface Temperature (LST); Reanalysis; Numerical Weather Prediction (NWP); 36 

Radiative Transfer Equation (RTE); MODTRAN; NCEP CFSv2 37 

 38 

1. Introduction 39 

Land Surface Temperature (LST) is a key parameter in a wide variety of environ-40 

mental applications. It is closely connected and plays an important role in Earth’s sur-41 

face-atmosphere interactions at both local and global scales [1–4]. Thermal infrared (TIR) 42 

remote sensing is an outstanding way of obtaining the LST at regional and global scales 43 

[5–7]. Nevertheless, the spectral radiation measured by TIR sensors onboard satellites is 44 
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determined not only by the surface parameters (emissivity and temperature) but also by 45 

the atmosphere effects (mainly due to water vapor) [6,8]. These atmospheric perturba-46 

tions must be compensated for the correct use of TIR remote sensing data [4,9]. In general 47 

terms, the conversion of the Top Of the Atmosphere (TOA) signal to the ground level. 48 

This process is named Atmospheric Correction (AC) and neglecting it results in system-49 

atic errors in the LST estimation for any atmosphere [8,10]. 50 

The physics-based Radiative Transfer Equation (RTE) method [11] is one of the most 51 

applied methodologies to AC and LST retrieval. It consists of a direct inversion of the 52 

RTE for a particular channel and can provide theoretically accurate LST retrieval [6]. The 53 

RTE approach requires vertical atmospheric profiles. This information is introduced into 54 

a Radiative Transfer Model (RTM) to calculate the three atmospheric parameters re-55 

quired for AC: atmospheric transmittance, upwelling atmospheric radiance, and down-56 

welling atmospheric radiance [8,12]. In situ radiosonde profiles launched simultaneously 57 

with the satellite overpass are ideal for AC [5,13]. Nevertheless, this kind of profile is 58 

unavailable under the most realistic conditions [5,14,15] and so its use is suitable only for 59 

particular local studies and validations at specific sites [7,14]. 60 

To surpass the radiosondes spatiotemporal limitation, atmospheric profile products 61 

derived from global reanalysis data have been used as a practical alternative in TIR at-62 

mospheric correction, resulting in LSTs with acceptable accuracy [9,16–20]. Nonetheless, 63 

these profiles also have disadvantages. The spatial resolution is considered low (several 64 

degrees, varying for each product). The accuracy is usually poor for regions with less 65 

coverage of permanent observatories, such as the oceans and many Southern Hemi-66 

sphere countries [21–23]. Modern Numerical Weather Prediction (NWP) models benefit 67 

from computing performance and physical processes parameterization to downscaling 68 

the reanalysis data [24]. Mesoscale atmospheric models use global (re)analysis as initial 69 

and boundary conditions for local applications [24,25]. Lee et al. (2020) [26] used 70 

high-resolution Korean NWP models as input atmospheric data for AC and sea surface 71 

temperature estimation with VIIRS sensor bands.  72 

The Weather Research and Forecasting (WRF) model [27] is an atmospheric model-73 

ing system designed for both research and NWP. It is the world’s most-used mesoscale 74 

model and provides capabilities for a range of applications in terrestrial systems. The 75 

WRF model has been widely employed for estimating high-resolution meteorological 76 

data [28–30]. It is all-important to assess the reasonableness of using the WRF model to 77 

generate high-resolution atmospheric profiles to perform, in conjunction with an RTM, 78 

more accurate AC/LST retrieval. Moreover, the vast majority of studies that evaluated 79 

different profile sources for LST retrieval were carried out over Asia and Europe. To the 80 

best of our knowledge, no paper has conducted such an assessment in South America. 81 

There is also a need for studies using newer and finer reanalysis profiles (e.g., ERA5 and 82 

NCEP CFSv2) for AC and LST estimation [19,31]. 83 

This paper conducts simulations with the WRF Model using NCEP CFSv2 reanalysis 84 

data as initial and boundary conditions. It aims to generate high-resolution vertical pro-85 

files, improving the spatial and temporal resolutions of the global reanalysis. And so an-86 

alyze the utility of these profiles in the atmospheric correction of TIR images and LST 87 

retrieval, through an RTE-based algorithm using the MODTRAN radiative transfer 88 

model and Landsat 8 TIRS band 10. The accuracy assessment was performed using local 89 

radiosonde observation in Southern Brazil. The well-established NASA’s Atmospheric 90 

Correction Parameter Calculator (ACPC) web-tool [10,12] and profiles extracted directly 91 

from the NCEP CFSv2 reanalysis were included in the comparative analysis. 92 

2. Data and Methods 93 

2.1. Study area and in situ radiosonde data 94 

The Porto Alegre International Airport (SBPA), Rio Grande do Sul State, Brazil was 95 

selected as the study area. The SBPA includes a radiosonde station, which made this site 96 
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useful for studies that aim to validate atmospheric profiles. The selected area covers the 97 

official limits of the Anchieta district, with an area of around 9.2 km² (Figure 1). The 98 

SBPA station is located at 30.00° S and 51.18° W, 3.0 m above mean sea level. Radiosondes 99 

are launched twice a day, at 00:00 and 12:00 UTC. We used the 12:00 UTC radiosonde 100 

profiles, as this is the closest to the Landsat 8 crossing time over the study site (~13 UTC). 101 

This dataset allows characterizing the vertical structure of the atmosphere with profiles 102 

of air temperature, pressure, humidity with up to 99 vertical levels. The radiosonde ob-103 

servations, as well as the parameters calculated from them, were used as the ground 104 

truth for the assessments. 105 

 106 

Figure 1. . Map of the study area showing the Porto Alegre Airport (SBPA) radiosonde station, 107 

Southern Brazil. 108 

2.2. Satellite and reanalysis data 109 

Landsat 8 carries a two-sensor payload: the Operational Land Imager (OLI) that has 110 

nine reflective bands and the Thermal Infrared Sensor (TIRS) with two bands in the TIR 111 

region. We acquired all Landsat 8 images (Collection 1) available under daily clear-sky 112 

conditions over the study site (Path-Row 221-81) from 2013 to 2019, which resulted in a 113 

total of 27 scenes, henceforward refer as case days 1–27. The full swath Landsat data were 114 

subset to a 10,184 pixels region covering the study area of Figure 1. The TIRS band 10 115 

(10.60–11.19 µm) is used for RTE-based LST retrieval and OLI bands 4 – red (0.64–0.67 116 

µm) and 5 – near-infrared (NIR) (0.85–0.88 µm) for land surface emissivity estimation. 117 

Additionally, we used the NCEP Climate Forecast System Version 2 (CFSv2) [32] 118 

reanalysis data from the 6-hourly product as initial and boundary conditions for the WRF 119 

simulations. NCEP CFSv2 reanalysis data is produced using the NCEP Global Forecast-120 

ing System (GFS) atmospheric model and the Grid point Statistical Interpolation (GSI) 121 

analysis system with three-dimensional variational data assimilation (3D‐Var). It is ar-122 

ranged in grids with a horizontal resolution of 0.5° x 0.5° in 37 vertical (pressure) levels 123 

(1000 – 1 mbar), and of 0.205° for surface parameters. Besides, profiles retrieved directly 124 

from NCEP CFSv2 were included in the analysis, to assess the WRF model horizontal 125 

resolution downscaling performance. These profiles were extracted from the grid point 126 

closest to the SBPA station. 127 

2.3. WRF Model configuration 128 

The WRF Model version 4.1.2 with the Advanced Research WRF (ARW) dynamical 129 

solver [27] was used to perform high-resolution numerical simulations. We configured 130 
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the WRF domains with two nested grids, in one-way mode, centered at SBPA station, 131 

with horizontal resolutions of 12 km (G12) and 3 km (G03) (4:1 parent grid ratio), and 33 132 

sigma vertical levels with 50 hPa top pressure value. The WRF configurations used are 133 

summarized in Table 1. The physics parameterizations chosen for our simulations are 134 

based on Santos and Nascimento (2016) [33] for the same station. The model was run in the 135 

below settings for each case day. The profiles resulted from simulations were retrieved 136 

from the model grid point closest to the SBPA station We conduct simulations of 24-h 137 

duration and the results were extracted at 12:00 UTC, to match with the local radiosonde 138 

observations. Thus, the first 12 h of the simulation was considered for spin up time. 139 

Table 1. Overview of WRF model setting. 140 

WRF Model Configuration 

Version 4.1.2 

Dynamical solver ARW 

Boundary conditions NCEP CFSv2 

Map projection Lambert 

Grid size Domain 1: (119 x 116) x 33 

Domain 2: (169 x 165) x 33 

Horizontal resolution Domain 1: 12 km 

Domain 2: 3 km 

Nesting One-way 

Time step 72s 

Static geographical data USGS 

Cloud Microphysics Purdue Lin 

Planetary Boundary Layer (PBL) Yonsei University (YSU) 

Cumulus Betts–Miller–Janjic (BMJ)1 

Shortwave Radiation Dudhia 

Longwave Radiation Rapid Radiative Transfer Model (RRTM) 

Land-Surface Model (LSM) Unified NOAH 

Surface-layer Revised MM5 
1 Domain 1 only. 141 

2.4. Land Surface Emissivity Estimation 142 

Land Surface Emissivity (LSE) is one of the key parameters to retrieve LST from 143 

remote sensing data [34,35]. Among the methods for LSE retrieval from space, Normal-144 

ized Difference Vegetation Index (NDVI)-based ones are operational and the most ap-145 

plied, with satisfactory results [36–39]. Sekertekin and Bonafoni (2020a, 2020b) [40,41] 146 

examined the influence of six NDVI-based LSE models on the performance of LST re-147 

trieval. Based on their results, we used the NDVI threshold method (NDVITHM) proposed 148 

by Sobrino et al. (2008) [36]. 149 

The NDVI is obtained from Equation (1): 150 

NDVI =  
ρNIR − ρR

ρNIR + ρR

 (1) 

where ρNIR and and ρR are the reflectances of NIR and red bands, respectively. From 151 

NDVI it is possible to calculate the Fractional Vegetation Cover (PV) from Equation (2) 152 

[42]. The PV is an important factor in the LSE estimation. 153 

PV =  [
NDVI − NDVImin

NDVImax − NDVImin

]
2

 (2) 

where NDVImin = 0.2 and NDVImax = 0.5 in a global context [13,36]. 154 
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The NDVITHM estimates LSE considering three different cases as presented in Equa-155 

tion (3), for Landsat 8 [40]. For NDVI < 0.2, the pixel is considered as bare soil, and the 156 

emissivity is calculated using the reflectance of the red band. In the second case (0.2 ≤ 157 

NDVI ≤ 0.5), the pixel is considered composed of a mixture of bare soil and vegetation 158 

and the LSE depends on the PV value. The pixels with NDVI values higher than 0.5 are 159 

considered as fully vegetated areas and the emissivity is assumed as 0.99. 160 

ε =  {
0.979 −  0.035ρR

0.004PV  +  0.986
0.99

                     NDVI <  0.2
       0.2 ≤  NDVI ≤  0.5
                     NDVI >  0.5

 (3) 

where ε is the Land Surface Emissivity (LSE). 161 

2.5. Atmospheric correction and LST Retrieval 162 

2.5.1. Atmospheric parameters calculation with MODTRAN and ACPC 163 

The present study used the MODTRAN (MODerate resolution atmospheric 164 

TRANsmission) 4 v3r1 [43] to estimate the three atmospheric correction parameters (i.e., 165 

atmospheric transmittance, upwelling atmospheric radiance, and downwelling atmos-166 

pheric radiance) in the Landsat TIR spectrum. We introduced into the MODTRAN as 167 

input vertical profiles of pressure, air temperature, and relative humidity from: (i) SBPA 168 

radiosonde; (ii) NCEP CFSv2 reanalysis; (iii) WRF G12; and (iv) WRF G03. 169 

The methodology of Barsi et al. (2003) [12] to fulfill the profiles was adopted. To 170 

predict space-reaching atmospheric parameters, the MODTRAN requires atmospheric 171 

profiles reaching “space”, or 100 km above sea level. Since the radiosondes and NCEP 172 

CFSv2 are from the surface to about 30 and 50 km, respectively, the upper atmosphere 173 

layers (to 100 km) are extracted from the MODTRAN standard atmospheres and pasted 174 

onto our site-specific profiles. We take on the standard mid-latitude summer profile for 175 

case days in hot seasons (spring and summer) and the mid-latitude winter profile for 176 

those in cold seasons (autumn and winter). This results in surface-to-space vertical pro-177 

files of air temperature, pressure, and water vapor. These completed profiles are those 178 

that are inserted into a MODTRAN input file and then processed [10,12]. 179 

Moreover, we include in the comparative analysis the atmospheric parameters es-180 

timated by the well-known NASA’s Atmospheric Correction Parameter Calculator 181 

(ACPC) web-tool [10,12]. The ACPC uses NCEP reanalysis profiles (1°x1° horizontal 182 

resolution and 28 vertical levels), MODTRAN code, and a suite of integration algorithms 183 

to directly provide the AC parameters for a particular date, time, and location inputted. 184 

The option of using the atmospheric profile from the closest integer coordinate to the 185 

inputted location (SBPA station) was set. The mid-latitude standard upper profiles varied 186 

according to the season of each case day. 187 

2.5.2. Radiative Transfer Equation (RTE) based LST Retrieval method 188 

The inverse solution of RTE [11] is a direct and a priori the most appropriate proce-189 

dure for LST retrieval using a single TIR band [44]. The RTE applied to a particular TIR 190 

band/wavelength (λ) can be simplified and given by: 191 

Lλ
sen = [ελBλ(Ts) + (1 − ελ)Lλ

↓ ]τλ + Lλ
↑  (4) 

where Lλ
sen (W·m−2·sr−1·µm−1) is the at-sensor (TOA) spectral radiance of the correspond-192 

ing TIR band (in this paper, TIRS10), ελ  refers to the LSE (dimensionless), 𝐵λ 193 

(W·m−2·sr−1·µm−1) is the blackbody radiance, 𝑇𝑠 (Kelvin) represents the LST, 𝐿λ
↓  and 𝐿λ

↑   194 

(W·m−2·sr−1·µm−1) refer to the downwelling and upwelling radiances, respectively, and 𝜏λ 195 

is the atmospheric transmittance (dimensionless). So the emitted radiance for a black 196 

body at a temperature Ts is given by the inversion of Equation (4): 197 
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Bλ(Ts) =
Lλ

sen − Lλ
↑ − τ(1 − ελ)Lλ

↓

τλελ

 (5) 

the Ts is calculated by inverting Planck’s law in Equation (5) and the LST (Ts) from Land-198 

sat 8 TIRS10 is estimated as: 199 

LST =  
K2

ln (
K1

Lλ
sen − Lλ

↑ − τλ(1 − ελ)Lλ
↓

τλελ

+ 1)

 

(6) 

where 𝐾1 and 𝐾2 refers to calibration constants, whose values for the Landsat 8 TIRS10 200 

are 774.89 W·m−2·sr−1·µm−1 and 1321.08 K, respectively [45]. Henceforth, the spectral no-201 

tation (λ) will be omitted, since here only a single TIR band is used. 202 

The aforementioned procedure was applied with τ, L↑ , and L↓  calculated using 203 

profiles from: (i) SBPA local radiosonde; (ii) NCEP CFSv2 reanalysis; (iii) WRF G12; (iv) 204 

WRF G03; (v) ACPC. 205 

2.6. Metrics for performance evaluation 206 

To evaluate the performance of the WRF model and other profiles we take into ac-207 

count the atmospheric parameters and LST images. The SBPA radiosondes are the 208 

available in situ observations. Hence, the AC parameters and LSTs calculated using SBPA 209 

profiles are considered our references. To perform the comparative assessment, Pearson’s 210 

correlation coefficient (R), bias (mean error), Mean Absolute Error (MAE), and Root 211 

Mean Square Error (RMSE) were used as statistical criteria. These metrics are widely 212 

employed to evaluate and compare models. 213 

3. Results and discussion 214 

3.1. Evaluation of atmospheric parameters 215 

The AC parameters (τ, L↑, and L↓) calculated with the different sources of estimated 216 

vertical profiles (CFSv2, WRF G12, WRF G03, and ACPC) were compared against those 217 

using observational SBPA radiosondes. In Table 2, the accuracy of atmospheric parame-218 

ters estimations is presented. All the profile sources provide AC parameters with high 219 

correlation coefficients (all greater than 0.9) concerning the reference (SBPA). The R val-220 

ues of ACPC, followed by CFSv2, are slightly better. There is a general but small ten-221 

dency of overestimating the transmittance values. On the other hand, the atmospheric 222 

radiances tend to be underestimated, except for ACPC downwelling. The smallest biases 223 

were from the WRF for all three parameters. The largest ones were from CFSv2. Con-224 

cerning MAE and RMSE, the best results were from ACPC followed by CFSv2. 225 

The higher negative bias of the atmospheric radiances with NCEP CFSv2 in our 226 

finds may be due to that these reanalysis profiles have the lowest level at 1000 hPa, which 227 

means around 60 – 250 m for SBPA station in analyzed case days. So the lowest layer of 228 

the atmosphere (which typically presents the largest water vapor content and warmest 229 

temperature) is neglected in these profiles [5,14]. We had tried to reduce this limitation by 230 

downscaling the CFSv2 reanalysis profiles with the WRF model. The WRF profiles bring 231 

the first level at around 1 m above the surface. 232 

Our RMSE range is in agreement with those founds for reanalysis profiles (eight 233 

different products) in Meng and Cheng (2018) [5] for the 3 parameters. The authors ana-234 

lyzed 30,715 atmospheric profiles in 163 stations around the globe. The RMSE values of 235 

Yang et al. (2020) [46] were overall slightly lower than ours. Their assessment included 236 

seven profiles sources over Europe. 237 

 238 
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Table 2. Statistical metrics of atmospheric parameters estimated from different atmospheric profiles. Bias, MAE, and RMSE are in 239 

the parameter of interest units, i.e., W·m−2·sr−1·µm−1 for atmospheric radiances and the transmittance is dimensionless. 240 

  
CFSv2 WRF G12 WRF G03 ACPC 

Transmittance 

R 0.96 0.93 0.93 0.97 

bias 0.01 ~0.00 ~0.00 0.01 

MAE 0.02 0.03 0.03 0.02 

RMSE 0.03 0.04 0.04 0.03 

Upwelling 

R 0.97 0.94 0.94 0.98 

bias -0.12 -0.04 -0.02 -0.06 

MAE 0.21 0.24 0.24 0.16 

RMSE 0.27 0.33 0.34 0.20 

Downwelling 

R 0.97 0.95 0.95 0.98 

bias -0.15 -0.05 -0.03 0.08 

MAE 0.28 0.30 0.30 0.21 

RMSE 0.35 0.42 0.43 0.27 

 241 

 242 

(a) 

 

(b) 

 

(c) 

 

Figure 2. Errors in the estimation of (a) atmospheric transmittance, (b) upwelling radiance, and (c) downwelling radiance 243 

from the different profiles for each case day. 244 
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The errors in the estimation of atmospheric parameters for each case day are shown 245 

in Figure 2. It shows that despite ACPC presented the best overall metrics, none of the 246 

profile sources outperforms in all cases. For instance, in 8 of the 27 case days, one of the 247 

WRF profiles had the best results in calculating the downwelling radiance. In case day 23, 248 

the WRF model produced the largest errors, whereas in cases such as 26 the model suc-249 

cessfully reduced the largest error of the driving reanalysis data. 250 

On the whole, ACPC obtained better results than the other profiles for all 3 atmos-251 

pheric parameters. After, comes the CFSv2 reanalysis. Table 2 points out that no signifi-252 

cant statistical differences were found between the parameters accuracies from the WRF 253 

grids G12 and G03. It suggests that computation costs can be saved by using profiles 254 

from a WRF domain with coarse horizontal resolution. Despite other aims, scholars have 255 

already reported this kind of result with WRF model grids [24,47–50]. 256 

3.2. Application to RTE-based LST retrieval 257 

To further assess the different atmospheric profiles, the retrieved LSTs by RTE in-258 

version with atmospheric parameters, Landsat 8 TIRS10 radiance, and NDVITHM emis-259 

sivity were intercompared. Once more, the LST images that used SBPA profiles were 260 

assumed as reference data. Except for the atmospheric parameters calculated from the 261 

different profile sources, the other variables in Equation (6) were the same for each pixel 262 

of the scenes. Therefore, the differences in LST values are due to the discrepancies among 263 

the profiles [46]. 264 

Histograms of LST errors take in all the 10,184 pixels in the study area of the 27 case 265 

days are shown in Figure. 3. These represent the frequency distribution of the errors in 266 

the retrieval of LST using the different atmospheric profile sources. For all profiles, more 267 

than 50 % of the errors are of ± 1 K. Yang et al. (2020) [46] also found most of LST differ-268 

ences in this range, using seven different reanalysis and satellite-derived profiles. The 269 

histograms in Figures 3b and 4c indicate that WRF profiles tend to overestimate the LST. 270 

Whereas ACPC tends to underestimate it (Figure 3d). Using WRF profiles, LST errors can 271 

reach more than 4 K, although in a very small number of cases. For ACPC and both WRF 272 

grids, the error range that occurs most often is between 0 and -1 K. The distribution of 273 

CFSv2 LST errors is more symmetrical than in the other profiles. 274 

Table 3 summarizes the metrics of the LST retrieval comparative analysis. Overall, 275 

the LST values of the four profile sources analyzed in this study were found in good 276 

agreement with the reference. All of them showed a very strong correlation and relatively 277 

low bias, MAE, and RMSE values. CFSv2, WRF G12, and WRF G03 presented an average 278 

positive bias and ACPC a negative one. This corroborates with the histogram analysis in 279 

Figure 3. The mean error criteria (MAE and RMSE) indicate that the profiles with the best 280 

performance in the RTE-based LST retrieval are, in descending order: CSFv2, ACPC, 281 

WRF G12, and WRF G03. The differences between CFSv2 and ACPC overall MAE and 282 

RMSE values were very small. The same for WRF G12 and G03. 283 

Comparing with previous studies that evaluated the application of different at-284 

mospheric profiles in the LST retrieval, Meng and Cheng (2018) [5] reported overall LST 285 

RMSE values higher than ours using the Landsat 8 TIRS10 band and eight different rea-286 

nalysis profile sources analyzed around the globe. All their eight average RMSEs were 287 

largest than 1 K. They also indicate an average tendency to overestimate the LST. In Yang 288 

et al. (2020) [46] study, RMSEs ranged between 0.6–1 K comparing LST retrieved from 289 

Landsat 8 TIRS10 over Europe. Calculating LST from three MODIS thermal bands, 290 

Pérez-Planells et al. (2015) [51] showed RMSEs between 0.6 and 0.9 K using ACPC/NCEP 291 

and between 1.3 and 3 K for MOD07 profiles, depending on the band and the altitude of 292 

the study sites in Spain. 293 

 294 
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(a) (b) 

  

(c) (d) 

Figure 3. Normalized histograms of the LST error using profiles from (a) CFSv2, (b) WRF G12, (c) 295 

WRF G03, and (d) ACPC. 296 

Table 3. Statistical metrics of Land Surface Temperature (LST) retrieved using atmospheric parameters from different profile 297 

sources. The LST values calculated with SBPA parameters were considered as reference. 298 

 
 

CFSv2 WRF G12 WRF G03 ACPC 

LST [K] 

R 0.99 0.99 0.99 0.99 

bias 0.23 0.32 0.36 -0.38 

MAE 0.54 0.79 0.81 0.56 

RMSE 0.55 0.79 0.82 0.56 

 299 

Figure 4 displays the distribution of LST bias and RMSE along the case days. Figure 300 

4a evidences the ACPC and WRF settings average tendency of under and overestimate 301 

the LST, respectively. We found better RMSE values using CFSv2 in 11 of the 27 cases 302 

days, and in 8 using ACPC. Although the metrics of mean errors are greater for WRF 303 

profiles, in 11 case days the model improves the results of the reanalysis. Besides, the 304 

finner grid (G03) succeeded in downscaling the G12 11 times. The fact is that the largest 305 

errors were achieved when using the WRF model (e.g., case days 23, 19, and 17), and it 306 

contributes to the higher overall RMSE values. In general, the days with larger errors in 307 

atmospheric parameters (Figure 2) are the days with larger LST RMSEs, as evinces the 308 

case 23. Conversely, in case 22, the errors in atmospheric parameters using ACPC are less 309 

than those using WRF profiles, but the highest LST RMSE on this day is with ACPC. 310 

Jiménez-Muñoz et al. (2010) [8] advocate that cases like this may be explained due to 311 

compensation among AC parameters errors. For instance, a significant positive differ-312 

ence in transmittance and significant but negative differences in the atmospheric radi-313 

ances. 314 

 315 
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Figure 4. LST (a) bias and (b) RMSE for each case day. 316 

In summary, the essay of downscaling the horizontal resolution of reanalysis data 317 

from 0.5° (~56 km) to 12 km and so to 3 km, aiming to reduce errors in the calculation of 318 

atmospheric parameters and hence in LST retrieval, did not perform as theoretically ex-319 

pected. With WRF simulations we also improved the vertical resolution in the lowest 320 

atmospheric levels. However, no significant improvement was found using the WRF 321 

profiles in the AC. In some cases, using a finner grid resolution profile even resulted in 322 

greater uncertainties in atmospheric parameters and LST estimation. Rosas et al. (2017) 323 

[7] reported that the higher vertical resolution of NCEP and ECMWF profiles in their 324 

study did not seem to play a significant role in the atmospheric correction. Even if natu-325 

rally data with higher resolution tend to better represent the atmosphere parameters, it is 326 

not a strictly direct relationship [5,46]. Furthermore, the ACPC that uses profiles with 327 

1°x1° (~100 km) horizontal resolution showed good results. Although these profiles have 328 

a coarser horizontal resolution, previous studies have been finding satisfactory results 329 

using the ACPC, even surpassing other methods [8,16,38,52,53]. It is important to note 330 

that in this study the WRF resulting profiles were extracted at 12 UTC to match with the 331 

available radiosonde data. Nevertheless, it could be set for the exact time of the satellite 332 

overpass. In ACPC and, in general, for reanalysis profiles, this time synchronization is 333 

done through linear interpolation. Which may not be the most appropriate strategy for 334 

sampling weather fronts and diurnal heating cycles [5,10,12]. 335 

4. Conclusions 336 

Vertical atmospheric profiles are key inputs in the atmospheric correction for esti-337 

mating LST using the RTE inversion single-channel approach. This study evaluated the 338 

use of the WRF numerical model to simulate high-resolution profiles improving hori-339 

zontal, temporal, and vertical resolutions of NCEP CFSv2 reanalysis data. The obtained 340 

results showed that the ACPC provided atmospheric parameters in better agreement 341 

with those calculated using radiosondes. The second-lowest differences were using 342 

CSFv2 profiles. No significant statistical differences were found between the parameters 343 

from the two WRF grids. None of the profile sources outperformed in all case days ana-344 

lyzed. The overall metrics of WRF profiles were influenced by some cases with large er-345 

rors. Concerning retrieved LST values, CFSv2 had the best results. With an RMSE of 0.55 346 
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K, it was slightly accurate than ACPC (RMSE of 0.56 K). WRF G12 and G03 showed 347 

RMSE values of 0.79 and 0.82 K, respectively. On balance, all the profile sources pre-348 

sented relatively good results in estimating the LST. 349 

From the above founds, our main conclusion is that there is no special need to in-350 

crease the horizontal resolution of reanalysis profiles aiming at general RTE-based LST 351 

retrieval. We recommend the use of NCEP CFSv2 profiles for these applications. More-352 

over, our results reinforce the ACPC validity and feasibility, which is free of charge. Even 353 

though the overall statistical metrics for WRF profiles were inferior, their results were 354 

satisfactory. Both in the estimation of atmospheric parameters and LST values. Despite 355 

some studies used the WRF model to simulate the skin temperature [54,55], to the best of 356 

our knowledge, this paper is the first effort applying the WRF model to aid the atmos-357 

pheric correction of thermal remote sensing data. Its use showed potential and our finds 358 

encourage further validations. Our proposal joins the background for studies combing 359 

TIR satellite images and high-resolution NWP models. 360 
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