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Abstract: NEXRAD radars detect biological scatterers in the atmosphere, i.e., birds and insects, 16 
without distinguishing between them. A method is proposed to discriminate bird and insect 17 
echoes. Multiple scans are collected for mass migration of birds (insects) and coherently averaged 18 
along their different aspects to improve the data quality. Additional features are also computed to 19 
capture the dependence of bird (insect) echoes on their aspect, range, and spatial locality. Next, 20 
ridge classifier and decision tree machine learning algorithms are trained on the collected data. For 21 
each method, classifiers are trained, first with the averaged dual pol inputs and then different 22 
combinations of the remaining features are added. The performance of all models for both methods, 23 
are analyzed using metrics computed on a held-out test data set. Further case studies on roosting 24 
birds, bird migration and insect migration cases, are conducted to investigate the performance of 25 
the classifiers when applied to new scenarios. Overall, the ridge classifier using only dual 26 
polarization variables was found to perform consistently well on both the test data and in the case 27 
studies. This classifier is recommended for operational use on the US Next-Generation Radars 28 
(NEXRAD) in conjunction with the existing Hydrometeor Classification Algorithm (HCA). The 29 
HCA would be used first to separate biological from non-biological echoes, then the ridge classifier 30 
could be applied to categorize biological echoes into birds and insects. To the best of our knowledge, 31 
this study is the first to train a machine learning classifier that can detect diverse patterns of bird 32 
and insect echoes, based on dual polarization variables at each range gate. 33 

Keywords: machine learning; weather radar; aeroecology; algorithm; birds; insects  34 
 35 

1. Introduction 36 
The Next-Generation Radar (NEXRAD) network consists of 160+ S-band polarimetric 37 

Doppler weather radars (WSR-88D), deployed across the continental US, Alaska, Hawaii 38 
and Puerto Rico. Each WSR-88D measures six variables comprising of three single 39 
polarization variables and three dual polarization variables. The single polarization 40 
variables are the radar reflectivity factor (𝑍) which is proportional to the power of the 41 
received signal, Doppler velocity (𝑉௥) which is determined from the power-weighted 42 
mean Doppler frequency shift of targets within the radar sampling volume and spectrum 43 
width (σ௏) which measures the variability of Doppler velocities within the sampling 44 
volume [1]–[3]. The dual polarization variables include differential reflectivity (𝑍஽ோ), the 45 
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logarithmic ratio of the reflectivity factors from the Horizontal (H) and Vertical (V) 1 
polarizations, differential propagation phase shift (Φ஽௉), the difference in phase shift 2 
between H and V polarizations and cross correlation coefficient (ρு௏) which measures the 3 
diversity in type, shape and/or orientation of scatterers in the sampling volume [1]. 4 

In addition to weather echoes, the WSR-88D can detect biological scatterers such as 5 
birds, bats and insects [4], opening potential applications for broad scale studies of their 6 
behaviour. For example, large-scale radar monitoring can improve our understanding of 7 
the spread of avian diseases by allowing a detailed mapping of migratory flyways [5], [6]. 8 
Additionally, bird strikes are a serious aviation hazard for low-level flights [6]. NEXRAD 9 
can be used as a bird surveillance system, thereby improving aviation safety [6], [7]. 10 
Another application is the identification of wind tracers. Insects have been found to be 11 
mostly driven by the wind during flight while birds are active fliers and can contaminate 12 
the wind derived from radar. Previous research has been dedicated to retrieve velocities 13 
contaminated by birds, using the features of reflectivity and Doppler velocity fields [8]– 14 
[10]. Therefore, correctly separating insect echoes from bird echoes can improve the 15 
quality of radar wind products.  16 

Many advances have been made in characterizing hydrometeor types [11]–[13]. 17 
However, the classification of biological echoes is still an active research field[7], [14]–[16]. 18 
A major obstacle to classifying biological echoes is that the shapes of birds and insects are 19 
strongly non-spherical [4]. Moreover, polarimetric measurements have a strong 20 
dependence on their size, shape and orientation [4], [17]. Thus, even in single-species 21 
ensembles, polarimetric quantities could have high variance depending on the azimuthal 22 
orientation [18]. This sometimes leads to similar measurements for bird and insect echoes, 23 
making it difficult to differentiate them. For example, the 𝑍஽ோ of Purple Martin colonies 24 
have been found to range from -4 to 6 dB [19] while insects have been found to have 𝑍஽ோ 25 
between 2 and 9 dB [20].  26 

Various methods have been explored to detect biological echoes with radars[14]–[16], 27 
[21]–[25], though much less work has been done in distinguishing bird and insect radar 28 
echoes. Nonpolarimetric radar was used in [26] to discriminate these echoes by measuring 29 
their radar cross sections within close ranges from radar. However, only two cases were 30 
examined with this approach. A fuzzy logic algorithm was also developed for separating 31 
birds and insects echoes in [7]. But the use of 𝑍 as an input complicates the resolution of 32 
densely aggregated insects and sparse groups of large birds.  33 

Machine learning models have been trained for detecting roosting birds in weather 34 
radar echoes focused on identifying their distinct toroidal shape. Convolutional neural 35 
networks were used in [27] to detect whether an individual radar image contained at least 36 
one Purple Martin or Tree Swallow roost, with correct predictions made about 90% of the 37 
time. Another machine learning system was developed in [28] that locates roosts within 38 
images and tracks them across frames. Although these methods are useful, they are 39 
designed to detect one orientation of birds while using the entire radar image as an input. 40 
They cannot be applied to a single range gate and cannot be used in situations where birds 41 
are not roosting. 42 

We propose a machine learning model that can classify diverse orientations of bird 43 
and insect echoes, from a single radar range gate. Two supervised machine learning 44 
methods are investigated: ridge classifier and decision tree. Dual polarization radar scans 45 
containing separate large scale bird and insect migration were collected (Section 2). Next, 46 
the migrating bird (insect) echoes are segmented using blob coloring and then their 47 
textures were computed (Section 3). Velocity azimuth display (VAD) is applied to change 48 
the measurement coordinates from being relative to the radar to be relative to the target 49 
and multiple bird (insect) scans are averaged to reduce contamination by other echoes in 50 
section 3. The averaged scans are used to derive training inputs for the classifiers.  The 51 
next sections summarize machine learning methods used (Section 4) and the metrics for 52 
evaluation (Section 5). Both machine learning methods are trained, first on only dual 53 
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polarization variables and then on different combinations of the remaining features 1 
(Section 6). Their performances are evaluated using metrics computed on test data 2 
(Sections 7).  Further case studies (section 8) are conducted to analyze performance on 3 
new scenarios from different WSR-88D radars. Finally, our conclusions and 4 
recommendations are presented in Section 9.  5 

2. Data collection  6 

2.1. Selection of bird and insect scans 7 
The radar resolution volume is much larger than biological targets.  As a result, it is 8 

common for a single volume to contain a mix of birds, insects and weather. Ideally we 9 
would want a homogenous composition of echoes. Furthermore, biota echoes can cover a 10 
large area (hundreds of kilometers). So it is impossible to inspect and label each volume. 11 
These creates difficulties in obtaining ground truth.  Our approach was to collect multiple 12 
scans of mass bird (insect) migration in clear air (this term is used for radar observations 13 
free from precipitation), where we expect to obtain the highest possible number of range 14 
gates containing birds (insects). We leveraged some known features of biological echoes 15 
to accomplish this step. A substantial part of nocturnal echoes in spring and fall have been 16 
found to be migrating birds [20]. Such migration is characterized by a large area of echoes 17 
centered around the radar site with velocities having the same direction (highly aligned). 18 
Further analysis of birds (Purple martins) has shown that they have modes around 0 dB 19 
for 𝑍஽ோ and 110∘ for Φ஽௉ [29]. Insects on the otherhand are commonly observed in clear 20 
air during warm seasons in Oklahoma, reaching peak intensity in the late afternoon [20]. 21 
They have also been found to have higher  𝑍஽ோ than birds, with most echoes saturating at 22 
the 8 dB limit of the WSR-88D and lower Φ஽௉  [29]. These properties were used to select 23 
90 clear air scans in which 45 PPIs are dominated by migrating birds and the other 45 24 
scans by insects. All scans were collected from KTLX (located near Oklahoma City, 25 
Oklahoma) at the 0.5∘ elevation. Each scan was also chosen such that the majority of 26 
echoes were due to biological migration activity. This is important for the subsequent 27 
extraction of migration echoes by blob coloring. Finally, all gates with range less than 10 28 
km were excluded to reduce contamination by ground clutter. 29 

2.2. Selection of radar variables for machine learning algorithms 30 
None of the single polarization variables are used in training our models. In general, 31 

birds are larger than insects. Since 𝑍 depends on the size of targets within the radar 32 
resolution volume, it could be a good differentiator. However, 𝑍 also depends on their 33 
population. In other words, a large 𝑍 value could be due to a sparse group of larger birds 34 
or a dense aggregation of insects. Because of this ambiguity in interpretating 𝑍, it was 35 
excluded from the inputs to the model. Similarly, birds typically fly faster than insects. 36 
However, biological targets leverage the underlying wind field to aid their flight. As a 37 
result, passively flying insects on a windy day could migrate with larger velocities than 38 
actively flying birds in a mild wind field. Furthermore, radial projection and aliasing 39 
complicates the interpretation of 𝑉௥. Thus, 𝑉௥  is excluded as an input to the model though 40 
it is used for VAD analysis to recover measurements from the target's aspect. Signal-to- 41 
noise ratio from biological scatterers are frequently low for the reliable measurement of 42 
spectrum width (σ௏). Due to this high noise contamination,  σ௏ is also excluded.  43 

 44 
Dual polarization variables have been used for the identification of biological echoes 45 

[7], [14]–[16], [20], [29]. In this work, they are used in training our model to distinguish 46 
between birds and insects. Using only dual polarization variables also has the advantage 47 
of ensuring temporal coherence. Biological echoes are predominant at the lowest antenna 48 
elevation scan of 0.5∘ in clear air. At this elevation, the WSR-88D completes two sweeps, 49 
about 30 seconds apart. The first (surveillance) sweep measures the dual polarization 50 
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variables and 𝑍. The second (Doppler) sweep measures the legacy single polarization 1 
variables. Combining variables from both sweeps could introduce errors. Assuming a 2 
target flies along a radial at a speed of 10 msିଵ, it would have migrated 300 m (more than 3 
the length of one range gate) between both sweeps.  4 

3. Feature processing to prepare inputs 5 
In this section, further processing is performed on the collected bird (insect) scans to 6 

prepare inputs for training and evaluating the classifiers. All scans in the data set are for 7 
highly aligned migration cases. First, the texture of each dual-pol variable is computed for 8 
each scan. Next, blob coloring and minor region removal are used to extract only range 9 
gates containing migrating birds (or insects), followed by VAD analysis to find their 10 
heading. The next step is critical. Ideally, we would desire a bird migration scan to be 11 
purely comprised of bird echoes. However, they usually also contain few insect echoes. 12 
Similar scenarios often occur for insect migration scans as well. We propose a way of 13 
coherently averaging multiple scans, along range and the target's aspect to improve 14 
reduce this contamination in our training data. 15 

3.1. Texture 16 
Many image operations are performed on a local section defined by a window. Such 17 

windows are usually described with respect to a reference pixel, where the result of any 18 
computation is output. In our case the reference pixel is the middle one. Textures are the 19 
result of one of such operations, that characterizes the spatial variation of radar variables 20 
in the two-dimensional fields i.e. azimuth and range directions [13], [29].  We calculated 21 
texture using an 8-connected window, which a 3x3 grid of pixels with the reference at the 22 
center. Mathematically, at a given radar gate with range 𝑟 and azimuth angle ϕ, the mean 23 
absolute deviation of a variable 𝑥 from its neighbor gates within the window is calculated 24 
as 25 

Δ𝑥௥,ம =
ଵ

ேିଵ
∑ ∑ ห𝑥௥,థ − 𝑥௥ା௜,థା௝หଵ

௝ୀିଵ
ଵ
௜ୀିଵ  ,         (1) 26 

 27 
where 𝑖 is the range gate offset, 𝑗 is the azimuth offset, and 𝑁 is the window size. 28 
Calculations were performed only when all the surrounding gates contained echoes.  29 

3.2. Blob coloring and minor region removal to extract migration echoes 30 
Blob coloring is an image processing method used to identify connected groups of 31 

pixels with the same value [30], [31].  It is applied to create a mask that indicates which 32 
range gates contain migrating echoes. Let us define some relevant terms before describing 33 
the algorithm. All definitions are with respect to a binary image where a pixel either 34 
contains a target (pixel value 1) or background (pixel value 0). A region (or blob) is a group 35 
of contiguous pixels with the same value. Two types of windows were applied in this 36 
study. The first is the previously described 8-connected window. The second window 37 
type is the 4-connected which refers to a reference pixel, and the neighbours directly 38 
above, below, left and right. Another operation performed is dilation, which involves 39 
iterating a window over an image and setting the pixels of interest at each step as the OR 40 
of all pixels within the window. The result is an expanded region of target pixels. 41 

 42 
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Figure 1. Blob coloring with minor region removal to extract large scale migration echoes. (a) Reflectivity (in dBZ) of bird 1 
migration echoes. (b) mask of bird migration echoes. (c) gates containing birds extracted using mask. (d) Reflectivity (in 2 
dBZ) of insect echoes (e) mask of insect echoes (f) gates containing insects extracted using mask 3 

Data for bird and insect migration were collected for clear air days, which are 4 
characterized by a large area of biological echoes centered around the radar. An example 5 
for bird migration 𝑍 in clear air is shown in Figure 1a within a maximum range of 6 
approximately 150 km.  𝑍 is only chosen for demonstration, it is not used at any other 7 
point of this study. The data matrix for this scan can be considered as an image 𝐼 where 8 
rows correspond to ranges and columns correspond to azimuth angles. The blob coloring 9 
with minor region removal algorithm is implemented as follows. First, the radar image 𝐼 10 
is binarized by setting all gates containing echoes to 1 while the remaining gates are set to 11 
0. The second step involves dilating the binarized image twice to connect echoes at the 12 
fringe of the migration blob that might be isolated. The dilated image 𝐽 is given as 13 

 14 
𝐽 = (𝐼 ⊕ 𝐵) ⊕ 𝐵,           (2) 15 
 16 

where ⊕ is the dilation operator, and  B is the 8-connected window. In the third step, a 17 
region labelling algorithm [30] is applied to identify the different target regions in 𝐽. Next, 18 
minor region removal [30] is applied, where the largest target region is retained and the 19 
remaining target regions are set to background pixels. Often, this major region contains 20 
few isolated holes of background pixels. These holes are plugged, by complementing the 21 
image, repeating the blob coloring with minor region removal algorithm and re- 22 
complementing the image [30]. The resulting mask 𝑀 is a binary image with one solid 23 
target blob (shown in Figure 1b) indicating the region containing migration echoes. The 24 
final image 𝐾 (Figure 2c) is extracted by the element wise multiplication of the map 𝑀 and 25 
the original image 𝐼. This is expressed as 26 
 27 

 𝐾 =  𝐼 ⊙ 𝑀,            (3) 28 
where ⊙ represents the multiplication operation. This image would contain the migrating 29 
birds. The same procedure is repeated for insect cases. Figure 1d shows 𝑍 for insects with 30 



Proceedings 2021, 65, x FOR PEER REVIEW 6 of 21 

 

 

a minor precipitation region west of the radar. The generated map excludes this minor 1 
region (Figure 1e). The final extracted echoes would contain insects (Figure 1f).  2 

3.3. Reference with respect to target azimuth 3 

 4 
Figure 2. VAD analysis to reorient velocity to be relative to the target aspect for 70 km range gates. 5 
The blue line shows filtered 𝑉௥ while the green line is the sine fit. (a) Initial VAD finds targets to be 6 
migrating toward  13.73∘ (b) Reoriented fit shifts measurements so migration is toward 0∘. 7 

Because of the non-spherical shape of biological targets, their radar returns would 8 
depend on the angle from which they are observed, hereafter referred to as their aspect. 9 
As such, methods for identifying biological echoes will have to account for this 10 
dependence. Cases of wide spread alignment can leverage traditional VAD [2], [32], [33]  11 
or azimuthal patterns in the correlation coefficient [18] to recover aspect information. We 12 
used VAD to rotate the variables, so they become a function of their aspect azimuth 13 
(ϕ௔௦௣௘௖௧). First a sinusoid model is fit to 𝑉௥  at every range, 14 

 15 
𝑉௥
෡ (ϕ) = |𝑉|𝑐𝑜𝑠(2π𝑓ϕ + δ),          (4) 16 
 17 

where 𝑉௥
෡  is the fitted radial velocity, ϕ is the radar's azimuth, |𝑉| is the magnitude of 18 

velocity along the migration direction, 𝑓 is frequency and δ is a phase offset (in degrees). 19 
It is assumed that the wind field is uniform at every height so 𝑓  ≈  

ଵ

ଷ଺଴
 cycles/degree. The 20 

migration direction is defined as where the targets are heading. It is obtained as the radar 21 
azimuth that maximizes 𝑉௥

෡ , 22 
 23 
ϕ௠௜௚௥௔௧௜௢௡ = 𝑎𝑟𝑔𝑚𝑎𝑥ம𝑉௥

෡ (ϕ),          (5) 24 
 25 
This direction captures measurements from the tail aspect. Scattering from other 26 

azimuthal aspects can be deduced by the lag from ϕ௠௜௚௥௔௧௜௢௡  as 27 
 28 
ϕ௔௦௣௘௖௧ = ϕ − ϕ௠௜௚௥௔௧௜௢௡,          (6) 29 
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 1 
such that a 𝜙௔௦௣௘௖௧  of 0∘ represents the tail region of biota, 90∘ represents the left wing 2 

region and 180∘ represents the head region. 3 
 4 
An example for this procedure is shown in Figure 2. Figure 2a shows the VAD at 5 

range 70 km for one of the scans in the training set. The blue line is the filtered velocity 6 
obtained by applying a 10th order one dimensional median filter on 𝑉௥ . The green line is 7 
the fitted 𝑉௥

෡ . Migration was found to be toward 13.73∘. The radial velocity w.r.t to the 8 
target 𝑉௥൫ϕ௔௦௣௘௖௧൯, shown in Figure 2b, is obtained by shifting 𝑉௥(ϕ) to the left by 13.73∘. 9 
Migration would be toward ϕ௔௦௣௘௖௧  of 0∘. This process is applied at every range ring to 10 
find the migration direction and rotate all dual polarization measurements and their 11 
textures. All measurements are now relative to the aspects of the targets 12 

3.4. Averaging bird and insect cases 13 

 14 

 

Figure 3. Averaged dual polarization variables as a function of ϕ௔௦௣௘௖௧ for the training set. (a) 𝑍஽ோ vs ϕ௔௦௣௘௖௧ (b) Φ஽௉ vs 15 
ϕ௔௦௣௘௖௧  (c) ρு௏ vs ϕ௔௦௣௘௖௧. Birds are in blue and insects red. Rows represent ranges of 15, 30 and 45 km from the radar. 16 

To reduce the contamination of bird migration cases by insect echoes and vice versa, 17 
multiple scans are averaged. Following blob coloring and rotation of the collected scans 18 
and their textures, they are grouped into 3 batches. Let us call them batches A, B and C. 19 
Each batch contains 15 randomly selected scans per class (a total of 30 scans per batch). 20 
We will focus on A though all steps discussed equally apply to B. Each scan will have 21 
different azimuths, so we created a new range and aspect azimuth grid both starting at 0 22 
and with resolutions of 250 m and 0.5∘ respectively. All scans were interpolated to this 23 
common grid. The new 15 scans for birds (insects) are then averaged. In the last step, all 24 
range gates in the resulting averaged scans from A and B are combined to form the 25 
training set, containing 1,711,624 samples: 57% bird and 43% insect cases. Batch C is used 26 
as the test set. It is not averaged so that it represents the kind of measurements we expect 27 
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from the WSR-88Ds. The test set contained 9,402,821 range gates with 60% bird and 40% 1 
insect cases. 2 

Some visualizations of the averaged training cases are shown in Figure 3. The blue 3 
curve is for birds and the red for insects. Each plot is for a dual polarization variable 4 
against the target aspect at specific ranges. From top to bottom, rows correspond to 5 
measurements 15, 30, and 45 km from the radar. From left to right, columns correspond 6 
to 𝑍஽ோ, Φ஽௉  and ρு௏ respectively. The averaging procedure shows that dual-pol variables 7 
have a strong dependence on ϕ௔௦௣௘௖௧  and exposes clear delineations between birds and 8 
insects. The results are also consistent with previous literature. Analysis in [19] found that 9 
echoes attributed to birds (Purple Martins) had 𝑍஽ோ between -4 and 6 dB. In our case, the 10 
averaged 𝑍஽ோ (shown in Fig. 4a) for birds is generally low, between -2 and 4 dB. The 11 
highest value is around 230∘ (between the head and right wing) and the lowest around 12 
75∘ (between the tail and left wing). Insects were found to have high 𝑍஽ோ (up to 10 dB) in 13 
[20]. Our averaged insect 𝑍஽ோ is also generally higher with most gates between 3 and 6 dB. 14 
Interestingly, the values dip below the bird 𝑍஽ோ values between ϕ௔௦௣௘௖௧  of 230∘ and 300∘. 15 
Φ஽௉  (shown in Figure 3b) for birds are generally higher than insects, with peaks around 16 
50∘ and 300∘. This is consistent with the observed symmetry of Φ஽௉  about the direction of 17 
migration [20]. Insects have lower Φ஽௉  values. ρு௏ (Figure 3c) for bird migration have 18 
been observed to have low values corresponding to tail-on viewing angles and high 19 
values for head-on angles [18], [19]. This can be seen in the sinusoid-like pattern in Figure 20 
3c, with high values (around 0.7) between 60∘ and 250∘ and low values (around 0.4) 21 
otherwise. Insects generally have higher ρு௏ than birds with a mean value around 0.7. 22 

After the averaging procedure, both the training and test data sets are normalized. 23 
The mean and standard deviation for each variable was computed from the 60 scans in 24 
batches A and B. They are used to normalize each variable by mean centering and scaling 25 
by their standard deviation. This ensures that all variables are on the same scale. The same 26 
procedure was applied to normalize their textures. 27 

3.4. Input features for classifiers 28 
The normalized dual polarization variables and their textures are used as input 29 

features for the classifiers. Additionally, inspection of the data revealed that variables 30 
varied gradually with range and 𝜙௔௭. Thus, two new discrete features were created to 31 
capture this variation. The first is range interval, which refers to 10 km bins. The second 32 
is sector, which refers to 20∘ sectors computed from 𝜙௔௭. All echoes collected in this study 33 
was from 10 to 230 km, so  𝑟𝑎𝑛𝑔𝑒  𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 would contain 22 elements. The first element 34 
is ignored since we did not consider ranges below 10 km.  𝑠𝑒𝑐𝑡𝑜𝑟 would contain 18 35 
elements. 36 

4. Machine learning methods 37 
Our goal was to train an algorithm for distinguishing bird from insect echoes, that 38 

could be implemented operationally on NEXRAD. Traditionally, fuzzy logic has been 39 
used for classifying weather radar echoes. However, we opted for a supervised machine 40 
learning (ML) approach mainly because they predict probabilities for each range gate in 41 
addition to predicting output classes. They can also be easily updated as new data is 42 
available since they learn a model that minimizes prediction errors on the training data.  43 

More complex neural networks have been successfully applied to detect [27]  and 44 
track roosting birds [28], however they were not designed to make classification on a 45 
single radar range gate, and rather use a rendered image of a full radar scan as input. They 46 
are also trained to specifically detect birds emerging from their roosting sites. As such, 47 
these networks cannot be generalized to other patterns of bird activity or types of 48 
biological echoes. In this study, we investigate a supervised ML approach for 49 
distinguishing birds and insects, that can use inputs from a single range gate, are able to 50 
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provide a probability that a range gate contains birds (or insects) and are easy to retrain 1 
as more data is collected. We explored using both the ridge classifier and decision tree.  2 

The ridge classifier learns a linear combination of input variables that achieves the 3 
best separation between classes in the output. We used the SGDClassifier [34] in scikit- 4 
learn. For a single range gate, the function is given as 5 

 6 
𝑓(𝒙) = 𝒘்𝑥 + 𝑏,           (7) 7 
 8 

where w is the weight vector , x is the input vector and 𝑏 is a bias term. The goal is to find 9 
parameters that minimizes the log loss error given by 10 

 11 
𝐿൫𝑦௜ , 𝑓(𝑥௜)൯ = log ቀ1 + exp൫−𝑦௜𝑓(𝑥௜)൯ቁ,         (8) 12 
 13 

where 𝑦௜  is the label for each training example. A scaled L2-norm of the weights is also 14 
added to the above loss to stabilize learning by penalizing any explosion of the weights. 15 
The final loss function is given by 16 

 17 
𝐶(𝑤, 𝑏, α) =

ଵ

௡
∑ 𝐿൫𝑦௜ , 𝑓(𝑥௜)൯ + 𝛼|𝑤|ଶ

ଶ௡
௜ୀଵ ,         (9) 18 

 19 
where 𝑛 is the number of training examples and α controls the effect of the weight penalty. 20 
The learning process uses stochastic gradient descent [35] on 𝑤 and 𝑏, and a search on α 21 
to find values that minimize 𝐶(𝑤, 𝑏, α).  22 

Our second technique, decision trees, learn rules to recursively partition data so that 23 
samples with the same labels are grouped together.  We used the DecisionTreeClassifier 24 
[34] from scikit-learn. Within the context of decision trees, an attribute 𝐴 is a question 25 
asked about the data e.g is 𝑍஽ோ > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑? Answers to this question, like True or False, 26 
are called values 𝑉௞  and are used to partition the data set. There are also two classes 𝑐௝  27 
containing 𝑝 positive examples (birds) and 𝑛 negative examples (insects). The entropy of 28 
an attribute measures its homogeneity. It is defined as 29 

 30 
𝐸 ቀ𝑝൫𝑐௝൯, … , 𝑝(𝑐௠)ቁ = ∑ −𝑝൫𝑐௝൯logଶ𝑝൫𝑐௝൯௠

௝ୀଵ ,      (10) 31 
 32 

where 𝑝൫𝑐௝൯ is proportion of the 𝑗th class. High entropy indicates a uniform distribution 33 
over classes while low entropy indicates the dominance of some classes. Information gain 34 
measures the reduction in entropy for a given split. It is defined as 35 

 36 
𝐺(𝐴) = 𝐸 ቀ𝑝൫𝑐௝൯. . 𝑝(𝑐௠)ቁ − ∑

௡ೖା௣ೖ

௡ା௣
𝐸൫𝑝൫𝑐௝൯. . 𝑝(𝑐௠)ห𝑉௞൯௟

௞ୀଵ  ,   (11) 37 
 38 

where 𝑛௞ and 𝑝௞  are the number of positive and negative examples respectively in the 𝑘th 39 
split. In order words, 𝐺(𝐴) is the difference between the entropy before a split and the 40 
mean entropy after the split. Decision trees learn by finding attributes that maximizes 41 
𝐺(𝐴). 42 

 43 

5. Metrics 44 
We used four metrics to assess our classifiers. They are accuracy (ACC), true positive 45 

rate (TPR), true negative rate (TNR) and area under curve (AUC). Table 1 below shows 46 
the confusion matrix for our classification problem. Birds are used as the positive class, so 47 
true positives (TP) are birds that are correctly classified as birds, false positives (FP) are 48 
birds classified as insects, false negatives (FN) are insects classified as birds and true 49 
negatives (TN) are insects correctly classified as insects. Each instance corresponds to a 50 
range gate. 51 
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Table 1. Confusion matrix for bird detection 1 
 True labels 

Classifier output Birds Insects 
Birds TP FP 

Insects FN TN 
 2 
Accuracy is the proportion of the whole data set that is correctly predicted. TPR is 3 

the proportion of correct predictions only on bird cases. Similarly, TNR is the proportion 4 
of correct predictions for the insect cases. They are calculated as shown in the following 5 
equations 6 

𝐴𝐶𝐶 =
்௉ା்ே

்௉ାிேାி௉ାிே
,         (12) 7 

 8 
𝑇𝑃𝑅 =

்௉

்௉ାிே
,          (13) 9 

 10 
𝑇𝑁𝑅 =

்ே

ி௉ା்
,          (14) 11 

 12 
Binary classifiers usually predict a probability (or score) for the positive class and 13 

then a threshold is applied to obtain the final class. The Receiver operating characteristics 14 
(ROC) curve plots  𝑇𝑃𝑅 against the false positive rate (𝐹𝑃𝑅) for varying probability 15 
thresholds [36]. 𝐹𝑃𝑅 is 1 − 𝑇𝑃𝑅. The goal of the ROC curve is to find an intermediate 16 
threshold that maximizes TPR and minimizes TNR. The Area under curve (AUC) metric 17 
summarizes the area under the ROC curve [36]. Good classifiers should have an AUC 18 
close to 100%. 19 

6. Model training and validation 20 
 Classifiers are sensitive to the class distribution of the training set. Thus, we applied 21 

class weights [34] to samples to balance their effect on the loss function. For each machine 22 
learning method, 8 models are trained using different combinations of inputs. First, a base 23 
model is trained on only dual polarization variables and then different combinations of 24 
the remaining features are added to investigate their effect on performance. It should also 25 
be noted that not all inputs features can always be obtained from the radar scan. For 26 
example, sector is calculated using a sinusoid fit to the velocity of migration echoes. These 27 
echoes are mostly composed of a single species moving in a particular direction. In cases 28 
with diverse species moving in different directions, the sinusoid fit will not be possible 29 
and sector cannot be recovered. Velocity aliasing could also prevent the recovery of sector. 30 
Similarly, the calculation of texture for a given gate depends on the presence of targets in 31 
all neighboring gates. In an alternative scenario, this calculation will not be possible. In 32 
such cases however, the base model can always be used. 33 

K fold cross validation [37] was used to tune the model hyperparameters. In this 34 
method, the data set is divided into K folds, model training is performed on K-2 folds, 35 
validation on 1 fold and testing on 1 fold. Since we already held out a test set (batch C), 36 
training was performed on K-1 folds and validation on 1 fold. The whole process is 37 
repeated K times where each fold is used as training and validation once. A total of 5 folds 38 
were used. After cross validation, the hyperparameters that have the best performance 39 
are chosen for each model. Final training is performed using the selected hyperparameters 40 
and the full training set. An ROC curve is then generated and a critical threshold found, 41 
such that it maximizes TPR and TNR. This threshold would be used to convert predictions 42 
into classes. The training process is stochastic so each run produces slightly different 43 
results. To have a robust assessment of performance, 30 independent training runs are 44 
repeated for each model. All the trained models are then evaluated on the test data. 45 
Confidence intervals for each metric is calculated using the bootstrapping percentile 46 
method where each metric is computed from an iteratively chosen random sample of the 47 
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test data [27], [38]. We computed each metric for 100 iterations based on 1000 randomly 1 
chosen samples. The 100 metrics for 30 repeated runs form a total of 3000 estimates. The 2 
confidence interval is found as the 2.5% and the 97.5% points of the distribution [27], [38]. 3 

 4 

Table 2. 95% confidence interval for the ridge classifiers' and decision trees' metrics on migration data. The possible inputs are 5 
Dual-Pol(𝐷𝑃), their textures(Δ𝐷𝑃), sector(𝑠𝑒𝑐𝑡) and range interval(𝑅𝐼). 6 

  ACC TPR TNR AUC 

Ridge classifier 

Dual-Pol 0.814 - 0.858 0.832 - 0.892 0.778 - 0.844 0.868 - 0.911 

Dual-Pol + texture 0.849 - 0.891 0.874 - 0.924 0.808 - 0.874 0.909 - 0.943 

Dual-Pol + sector 0.812 - 0.858 0.822 - 0.886 0.784 - 0.85 0.869 - 0.911 

Dual-Pol + range interval 0.815 - 0.86 0.836 - 0.894 0.774 - 0.844 0.869 - 0.912 

Dual-Pol + texture + sector 0.849 - 0.891 0.87 - 0.924 0.81 - 0.874 0.91 - 0.943 

Dual-Pol + sector + range interval 0.813 - 0.858 0.826 - 0.884 0.78 - 0.848 0.869 - 0.912 

Dual-Pol + texture + range interval 0.849 - 0.891 0.872 - 0.926 0.81 - 0.872 0.91 - 0.944 

Dual-Pol + texture + sector + range interval 0.85 - 0.891 0.87 - 0.922 0.812 - 0.876 0.91 - 0.944 

Decision trees 

Dual-Pol 0.8 - 0.856 0.786 - 0.892 0.762 - 0.852 0.872 - 0.92 

Dual-Pol + texture 0.778 - 0.852 0.786 - 0.902 0.718 - 0.846 0.866 - 0.925 

Dual-Pol + sector 0.751 - 0.815 0.658 - 0.8 0.79 - 0.88 0.831 - 0.884 

Dual-Pol + range interval 0.75 - 0.82 0.668 - 0.794 0.79 - 0.882  0.792 - 0.868 

Dual-Pol + texture + sector 0.713 - 0.804 0.628 - 0.79 0.768 - 0.866 0.793 - 0.873 

Dual-Pol + sector + range interval 0.684 - 0.762 0.518 - 0.68 0.814 - 0.894 0.711 - 0.796 

Dual-Pol + texture + range interval 0.714 - 0.813 0.7 - 0.828 0.676 - 0.844  0.751 - 0.871 

Dual-Pol + texture + sector + range interval 0.669 - 0.796 0.572 - 0.732 0.71 - 0.87 0.702 - 0.832 

  7 
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7. Performance 1 
 The 95% confidence interval for the model metrics are shown in Table 2. All the 2 

ridge classifiers are predictive with 𝐴𝐶𝐶 > 0.81, 𝑇𝑃𝑅 > 0.82, 𝑇𝑁𝑅 > 0.77 and 𝐴𝑈𝐶 > 0.86. 3 
Sector is expected to greatly improve results however it's addition to ridge classifiers 4 
cause marginal changes to performance.  It slightly improves TNR, slightly reduces TPR 5 
and does not seem to have a noticeable effect on AUC. This could be because the training 6 
data was already averaged along the aspect angles creating a clearer delineation between 7 
both classes, so that classification can be effectively performed without sector. Recall that 8 
sectors are 20° ϕ௔௭ bins. Addition of range interval marginally changes performance, 9 
improving ACC, TPR and AUC, and reducing TNR. The addition of texture generally 10 
improves the model metrics. 11 

The decision tree models are also predictive for TPR, TNR and AUC but perform 12 
significantly worse on TPR with some models having values around 0.5. This seems to 13 
coincide with models using range interval and/or sector. A possible cause could be that 14 
it's binary decision making tends to prefer classifying whole range intervals (or sectors) 15 
as one class in contrast to ridge classifiers that only learns a probability adjustment. Using 16 
smaller range intervals and sectors might mitigate this problem. Like the ridge classifiers, 17 
incorporation of texture generally improves the model metrics. However, this might not 18 
generalize to non-migration cases.  Recall that labels were provided based on the 19 
dominant migrating taxa. Textures have the effect of averaging measurements derived 20 
over a 3x3 neighborhood, so would emphasize the dominant class leading to better 21 
metrics for migration cases. However, for non-migration cases with a heterogeneous mix 22 
of scatterers, texture could lead to mis-classifications. 23 

Both models were compared using an independent two sample t-test with a 24 
significance level of 0.05. The null hypothesis was that both metric distributions have the 25 
same mean.  The ridge classifiers proved to be the better performing method with higher 26 
means on at least 3 metrics. Based on these results the ridge classifier was selected as a 27 
better method. All further discussions would be focused on this classifier. The best ridge 28 
classifier uses dual polarization variables, texture, sector and range interval as inputs with 29 
𝐴𝑈𝐶 >  0.91.  It is possible though, that the improvement caused by the added features 30 
could be the classifiers over-fitting to migration cases. Thus, additional studies on a 31 
diverse variety of cases (presented in the next section) are required to understand the 32 
effect of these features on performance.  33 

8. Case studies and discussions 34 
 In this section, the performance of the ridge classifiers is further tested on six cases. 35 

The aim of these analysis is to verify that the classifier's detections are consistent with the 36 
available ground truth and to observe the effect of different features on their performance. 37 
For operational use, we recommend that the ridge classifiers be used as a sub-classifier for 38 
the HCA. This configuration is applied to cases in this section. The first case analyzes an 39 
event of mass bird migration from the test data set (collected from KTLX) to explore the 40 
effect of the different inputs. The second case contain groups of bird roosts, insects and 41 
weather echoes collected from KHTX (located in Huntsville, AL). Ground truth was 42 
available from previous literature [29] so this would be a good test of the classifiers’ 43 
accuracy. It also tests the classifiers on a different WSR-88D radar. In the third case, the 44 
classifier was tested on an event of birds observed fleeing their nests shortly after an 45 
earthquake in Oklahoma. The next case investigates another bird roost from KMOB 46 
(Mobile, AL) where ground truth was obtained from previous literature [27], [39]. The 47 
final case studies swarms of insects observed from six NEXRAD radars across the 48 
southern US, evaluating the potential of the classifier to be applied for broad scale 49 
surveillance of biological echoes.  50 

 51 



Proceedings 2021, 65, x FOR PEER REVIEW 13 of 21 

 

 

 1 

 

Figure 4. Ridge classification results for bird migration observed with KTLX radar at 04:13 UTC on 2 May 2015. BIR 2 
represent birds and INS represent insects. 3 

 4 
 5 

8.1. Mass migration of biota, KTLX 6 
 7 
The first case was collected from KTLX at 04:13 UTC on 2 May 2015 containing a 8 

swarm of migrating birds. It is one of the PPIs in the test set, so all the input variables are 9 
available. Sector could be recovered because migration was highly aligned. The classifier 10 
predicts a probability of each range gate containing bird echoes. The critical threshold 11 
(~0.5) is applied to binarize these probabilities to 0's (insects) and 1's (birds) and obtain the 12 
output class. The ridge classifier outputs are shown in Figure 4. Birds are colored blue 13 
while insects are colored red. Across the 8 ridge classifiers, birds are detected in 94.4%   − 14 
  95.4% of classified gates, consistent with our hypothesis of birds as the main source of 15 
echoes. Overall, the performance of the base model barely changes as the remaining 16 
features (texture, sector and range interval) are added, with at most a 1% difference in 17 
proportion of birds detected. A similar study (not shown here) was performed on an insect 18 
swarm case in our test data. This case was collected from KTLX at 17:08 UTC on 11 July 19 
2019. The classifiers detected an insect majority of 92.3%   −   92.7% in classified gates. 20 
Again, there is a minute difference at most 0.4% for changing input features. This suggests 21 
that some features might be playing a redundant role. 22 

 23 

8.2. Bird roosts from KHTX and KTLX 24 
The second case study was conducted on data collected from the KHTX radar 25 

(located at Huntsville, AL) at 11:15 UTC on 11 August 2015. This case assesses the ridge 26 
classifiers on bird roosts from a different WSR-88D radar. The 𝑍 scan is shown in Figure 27 
5b with three groups of echoes, labelled based on analysis conducted in [29]. The first 28 
group contains two colonies of purple martins engaging in their morning roosts, verified 29 
by ground observers from the Purple Martin Conservation Society [29]. The roosts are 30 
located north-west and west of the radar. Insects, surrounding the radar location were 31 
also identified by their comparatively low mean airspeed of 1.8𝑚𝑠ିଵ and concentration at 32 
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low heights [29].  The air speed was calculated by subtracting of wind speed vectors, 1 
obtained from balloon sounding from ground speeds obtained from radial velocity [18]. 2 
The final group were weather echoes identified by 𝑍஽ோ near 0 dB, ρு௏ around 1 and Φ஽௉ 3 
near the calibration offset of 60∘ [29]. 4 

 5 

 

Figure 5. Bird roosts observed with KHTX at 11:15 UTC on 11 August 2015. (a) RC using dual polarization variables. (b) 6 
0.5∘ 𝑍 scan showing bird roosts (west and north-west), insects (around the radar) and weather echoes (north-east and 7 
south). (c) RC using dual polarization variables and their textures. (d) RC using dual polarization variables and range 8 
interval. (e) HCA. (f) RC using dual polarization variables, their textures and range interval. 9 

 10 
The HCA is applied to classify range gates into the five groups: weather WEA, 11 

biological BI, unknown UK, ground clutter GC and range folded echoes RH. The results 12 
(shown in Figure 5e) can be seen to corroborate the labels provided in [29]. Next, the ridge 13 
classifiers are applied on the biological class. Sector could not be recovered here because 14 
of the presence of diverse scatterers with different velocities. The base classifier (Figure 15 
5a) and the classifier with range interval (Figure 5d) identify the roosts as bird dominated 16 
and the insect region as insect dominated. These results are consistent with the available 17 
ground truth. The models with texture (Figure 5c and 5f) identifies the insect region but 18 
mis-classify large parts of the roosting birds as insects, most noticeable where the western 19 
roost intersect with insect echoes. 20 

Overall, the base classifier's detections matches the labels provided demonstrating 21 
the efficacy of the classifier on new cases of biological activity and a different NEXRAD 22 
radar. The addition of range interval does not have a noticeable effect on performance 23 
while texture seems to degrade performance on fine and hollow features like bird roosts. 24 
A similar case containing bird roosts (figure not included here) collected from KTLX at 25 
11:47 UTC on 8 August 2017, was processed with the ridge classifier. Again, the base 26 
classifier detected the roosts as bird dominated and the addition of other features did not 27 
improve the result. This is further evidence that the remaining features might not be 28 
necessary. For the sake of algorithmic simplicity, we decided to choose the base classifier. 29 
The analysis in the remaining case studies would be focused on this classifier. 30 

 31 
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8.3. Birds escaping their nests during an Earthquake, KTLX 1 

Broad scale movement of biological echoes is commonly in response to natural 2 
phenomena. The next case study is for one of such occurrences. An earthquake occurred 3 
in Oklahoma on 29 October 2015 at 11: 39 UTC,  resulting in a splash of birds leaving their 4 
nests observed on the KTLX radar. The reflectivity of echoes recorded two minutes after 5 
the quake is shown in Figure 6a. Notice a line of high reflectivity values tracing the 6 
movement of the birds away from their nests. This line progresses southward in the next 7 
few scans. The base ridge classifier (shown) in Figure 6b detects a bird majority, with 8 
86.8% of echoes classified as birds further corroborating ground observations.  9 

  

(a) (b) 

Figure 6. Birds leaving their nests in response to an earthquake in Oklahoma on 29 October 2015 at 11: 39 UTC, observed 10 
by KTLX (a) Reflectivity showing a splash of birds leaving their nests (b) RC detect a bird majority with 86.8% of echoes 11 
classified as birds. 12 

 13 

8.4. Bird roosts from KMOB 14 
The fourth case study involves a bird roost observed by KMOB (located in Mobile, 15 

AL) on 4 July 2015 at 11:19 UTC. This case is one of many labelled manually by Kelly and 16 
Pletschet by searching radar imagery from one hour prior to local sunrise till 30 minutes 17 
after local sunrise, an effort that required examining 70,000 – 140,000 images per year[27], 18 
[39]. Figure 7a shows the reflectivity for this case with the observed bird roost enclosed in 19 
the black circle. The base ridge classifier (Figure 7b) detects birds as the main cause of this 20 
roost. 21 

 22 

  

(a) (b) 

Figure 7. Bird roost observed by KMOB (located in Mobile, AL) on 4 July 2015, 11:19 UTC (a) Reflectivity image showing 23 
bird roost to the west of KMOB (b) RC detects roosts to be mainly comprised of birds. 24 

 25 
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8.5. Insects observed over southern United States 1 
The final case study is performed on a snapshot of the Southern United States on 19 2 

April 2016 at 00:00 UTC (approximately 22 mins before local sunset). The snapshot 3 
includes returns from six NEXRAD radars. They are KNQA (located in Memphis, TN), 4 
KHTX (Huntsville, AL), KGWX (Columbus AFB, MS),  KBMX (Birmingham, AL), KDGX 5 
(Jackson Brandon, MS) and KMXX (Maxwell AFB, AL). The ZDR of this snapshot is shown 6 
in Figure 8a below. Insects were identified around the radars for this case by their well- 7 
known dumb-bell patterns in ZDR and Z [29] . Furthermore, airspeed analysis using the 8 
00 UTC Birmingham, AL, sounding on KBMX yielded airspeeds of 2.39 m/s in the lowest 9 
kilometer of airspace, indicating insect presence [29]. The base classifier (shown in Figure 10 
8b) detects these echoes around the radar as being predominantly insects, matching 11 
observations in previous research. The holes in the detected insect swarms is an artifact of 12 
the prefiltering step using the HCA. 13 

 14 

  

(a) (b) 

Figure 8. Snapshots of insects over southern United States on 19 April 2016 at 00:00 UTC (approximately 22 mins before 15 
local sunset) (a) ZDR shows the characteristic dumb-bell pattern with high values horizontally across and lower values 16 
vertically across the insect swarms (b) RC detects insect swarm as predominantly insects. 17 

 18 

9. Conclusions 19 
NEXRAD’s detection of birds and insects offers much promise for a variety of 20 

applications. In this work, we developed a classifier for distinguishing bird and insect 21 
radar echoes based on dual polarization variables. Unique challenges were faced during 22 
data collection due to complex scattering off their non-spherical bodies. This was 23 
addressed by leveraging cases of large-scale migration with an aligned heading to change 24 
measurement coordinates from being relative to the radar to be relative to the body aspect 25 
of biota. The mean flight direction, which would measure scattering off the tail, was found 26 
by VAD analysis and then measurements from other aspects are deduced by the lag off 27 
this mean heading. Another issue is the difficulty in labelling training data sets because 28 
of the frequent collocation of birds, insects and other non-biological echoes in the radar 29 
sampling volume. We addressed this by averaging 15 alignment calibrated bird (insect) 30 
migration scans to reduce the effect of the less dominant class. 31 

The data preparation pipeline is summarized in the following steps. First, 45 scans 32 
containing mass migration in clear air were collected for each class. Blob coloring with 33 
minor region removal was applied to extract the blob of migration echoes and their 34 
textures computed. Extracted migration echoes are then rotated to become relative to the 35 
target's aspect. The rotated scans are grouped into 3 batches, each containing 15 scans per 36 
class. All 15 scans in two of the batches are averaged to reduced contamination. This is 37 
done for both classes. Gates from the 4 resulting averaged scans are used as training 38 
samples. The last unaveraged batch is used as the test set. All samples in both sets are 39 
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assigned a unique range and aspect identifier. The range identifier, 𝑟𝑎𝑛𝑔𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, is the 1 
range index when the data is grouped into 10 km range intervals while the aspect 2 
identifier, sector, is the index from grouping into 20∘ target azimuth bins. These identifiers 3 
along with the dual pol variables and their textures make up the candidate input feature 4 
set. 5 

Two machine learning methods were explored: ridge classifier and decision tree. 6 
Eight models were trained for each method, starting with a base model using only dual 7 
polarization variables and then adding other input features. Four metrics were used for 8 
evaluating the classifiers on the test data set. They are accuracy (ACC), true positive rate 9 
(TPR), true negative rate (TNR) and area under curve (AUC). A comparison of the metrics 10 
from both methods showed that the ridge classifiers performed better than decision trees 11 
in at least 3 out of 4 metrics. Based on this, the ridge classifiers were selected for classifying 12 
bird and insect radar echoes. All the ridge classifiers are predictive with 𝐴𝐶𝐶 > 0.81, 13 
𝑇𝑃𝑅 > 0.82, 𝑇𝑁𝑅 > 0.77 and 𝐴𝑈𝐶 > 0.86. The addition of other features show an 14 
improvement of about  4% on these metrics, however later evidence suggests that this is 15 
probably due to over-fitting to cases of large scale migration. 16 

Further qualitative case studies was conducted to assess the effect of the different 17 
inputs to the classifier on a bird and insect migration scan from the test set. The ridge 18 
classifiers detected birds in 94.4%   −   95.4% of range gates for the bird scan and insects 19 
in 92.3%   −   92.7% of gates for the insect scan, consistent with our hypothesis of the 20 
source of these echoes. The addition of the remaining features to the base model has a bare 21 
effect on performance, with an increase of at most 1% and 0.4% in the proportion of birds 22 
and insects detected respectively. This suggests that the additional input features might 23 
be superfluous. The classifiers were also evaluated on diverse cases of biological activity 24 
across NEXRAD. The training data was collected from KTLX, so the ability to detect 25 
biological patterns from other WSR-88Ds would provide strong evidence that it can be 26 
applied on the network. Furthermore, the training data did not contain bird roosts. Thus, 27 
the ability to detect roosting birds would be evidence in favour of the generality of the 28 
classifier.  The next case explored bird roosts collected by the KHTX (located in Huntsville, 29 
AL). Previous studies [29] provided ground truth for bird roosts, insects and weather 30 
echoes for this scan. Sector could be recovered here because of the heterogenous mix of 31 
scatterers. The detections of the base classifier and the one with range interval match the 32 
provided ground truth. The addition of texture seems to degrade performance on the 33 
roosts, probably because it is less suited for capturing finer features. The classifier was 34 
also evaluated on a similar case from KLTX containing four bird roosts identified by 35 
observing the expanding ring over time. Again, the base classifier and the one with range 36 
interval detect all the roosts as birds, while the addition of texture degraded performance. 37 
Overall, the tests conducted show no evidence of improvements from adding features to 38 
the base classifier. For the sake of algorithm simplicity, the base ridge classifier is selected 39 
as the best model for our classification task. 40 

Sometimes biological activity is a cue to underlying seismic events. In the next case, 41 
the base ridge classifier is tested on a splash of birds (observed by KTLX) fleeing their 42 
nests in response to an earthquake in Oklahoma. The classifier detects 86.8% of echoes to 43 
be from birds. This demonstrates a potential of use this classifier as a tool to study natural 44 
events of common interest to humans and birds/insects. For the fourth case study, the 45 
classifier was tested on a bird roost from KMOB where ground truth labels are known 46 
from previous research [27], [39]. The base classifier detects the roost as birds. The final 47 
case study demonstrates the use of the classifier for large scale surveillance on NEXRAD. 48 
Here, swarms of insects were observed across the southern United States just before local 49 
sunset using 6 NEXRAD radars. The insects were identified in previous literature by their 50 
characteristic dumb-bell pattern in Z and ZDR, and low mean airspeeds in the lowest 1 51 
km of airspace. The classifier detects these swarms as inspects. 52 
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In our test cases, the base ridge classifier has been demonstrated to correctly classify 1 
different orientations of biological echoes across NEXRAD. As such, we recommend this 2 
classifier could be implemented on the network, as a sub-classifier on the HCA’s biological 3 
class.  The biggest challenge to developing biological classifiers is obtaining the ground 4 
truth. For future research, we hope to collect more ground truth data using other sensors 5 
to validate our classifier. We also hope this research encourages other data collection and 6 
verification efforts for biological radar echoes. 7 
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