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Abstract: The prediction of fog is a challenging task in operational weather forecast. Due to its de- 12 

pendency on small scale processes, numerical weather models struggle to deal with under scale 13 

features resulting in uncertainties on the fog forecast. Unawareness of the onset time and the dura- 14 

tion of fog leads to disproportionate impact on open air activities, especially in aviation. Neverthe- 15 

less, in a small sized country such as Portugal mainland, the fog varies greatly. The traffic of the two 16 

busiest Portuguese international airports of Porto and Lisbon is affected by the occurrence of fog in 17 

different times of the year. The fog occurrence at Porto is a predominant winter phenomenon and a 18 

summer one at Lisbon. Observational variables and their trend are local indicators of favouring 19 

conditions to the fog onset, like cooling, water vapour saturation and turbulent mixing. A dataset 20 

corresponding to 17 years of half hourly METAR from the airports of Porto and Lisbon is used to 21 

diagnose the pre fog conditioning. Two diagnostic models are proposed to assess pre fog conditions. 22 

The first model is adapted from the statistical method proposed by Menut et al. (2014), which per- 23 

forms a diagnosis from key variables trend, such as temperature, wind speed and relative humidity. 24 

Thresholds are defined from the METAR samples in the six-hours period prior to the formation of 25 

fog. Due to the local character of fog, the presented thresholds are the most appropriate ones for 26 

each airport. The predictability of fog is then assessed using observations. The second approach 27 

consists of neural networks such as a fully connected (FC) network and a recurrent neural network 28 

(RNN), which are especially well suited for time series. By experimenting with different types of 29 

neural networks (NN), we will try to capture the connection between the temporal evolution of 30 

measured variables in the dataset and the fog onset. These experiments will include different time 31 

windows to measure its influence in the prediction performance.  32 

Keywords: fog prediction; statistics; diagnosis; deep learning; Multiplayer Perceptron; Recurrent 33 

Neural Networks 34 

 35 

1. Introduction 36 

Among the weather phenomena that affects the visibility range near the Earth’s sur- 37 

face, the fog is the one that constrains human activities with most economic impact, and 38 

sometimes even jeopardizes human lives. Due to its great incidence on aviation, climato- 39 

logical studies and field campaigns have been focused on busy airports around the world 40 

[1,2,3,4,5,6,7].  41 

World Meteorological Organization defines fog as the visibility restriction due to wa- 42 

ter droplets in the lower atmosphere that reduces the horizontal visibility to less than 1 43 

km near to the ground [8]. The knowledge of local weather conditions that culminate in 44 
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fog plays a major role in operational forecast [1]. A study carried out by Policarpo et al. 1 

[9] has shown that a large artificial lake of 250 km2 and its irrigated area become a local 2 

important source of moisture, that increases the availability of water vapour, favouring 3 

the formation of fog over the lake and its surroundings. Egli et al. [10], described the rela- 4 

tion between the terrain characteristics, the predominant weather situations and the clas- 5 

sification of fog patterns.  6 

Later, Guerreiro et al. [7] studied the fog characteristics at the Portuguese interna- 7 

tional airports, the conditions prior to the onset, at large and local scales, and the classifi- 8 

cation of fog into advection, radiation, cloud base lowering, precipitation and evaporation 9 

types.  10 

The connection between the prior conditions to the onset and the fog forecast was 11 

proposed by Menut et al. [11] using data from a single instrumental site (SIRTA labora- 12 

tory), and a statistical methodology to estimate the probability of existing meteorological 13 

conditions favourable to radiative fog formation. Later, Róman-Cascón et al. [12] had ap- 14 

plied the same methodology using data from two research facilities, one in Netherlands 15 

(CESAR) and the other at Spain (CIBA), to evaluate the radiation fog forecast based on the 16 

observational data and Weather and Research Forecast model (WRF) output. In the pre- 17 

sent study the same methodological basis is used to diagnosis conditions extended to all 18 

types of fog using METAR data, from the international Portuguese airports. 19 

Given that usually it is difficult to model the behavior of weather phenomena, data- 20 

driven methods are attractive to use. NN, in particular, have two theoretical advantages 21 

over conventional statistical methods. The first advantage is that no distribution needs to 22 

be assumed; the second is that theoretically it can approximate any smooth function. Con- 23 

sidering the advantages, neural networks have been used in atmospheric sciences for sev- 24 

eral decades [13].  25 

One of the first successful types of NN was the multilayer perceptron (MLP). This 26 

type of network consists in an arrangement of artificial neurons, organized into layers. 27 

Neurons between layers are connected by weights and the output of each neuron is a 28 

function of the sum of the inputs, modified by a non-linear activation function. Because 29 

each neuron in a layer connects to every neuron in the following, MLP are also usually 30 

designated as fully connected (FC) or densely connected networks. One of the main draw- 31 

backs of MLP is that the number of weights increases rapidly with the increasing number 32 

of neurons and the inputs vectors with higher dimensionality. This makes the adjustment 33 

of the weights (commonly called training phase) extremely difficult for problems with 34 

many variables. 35 

The limitations of MLP prevented its successful application to image-like data. For 36 

this application, an architecture with shared weights was proposed, that performs convo- 37 

lutions of kernels across the input vector. This type is designated as convolutional neural 38 

network and is especially suited to explore the spatial structure of the data. This not only 39 

allowed super-human performance in classification of common images but was used in 40 

several weather prediction tasks [14]. 41 

While both types of the presented networks are considered feedforward networks, 42 

there is also another family of networks, which is called recurrent neural networks. These 43 

are especially adequate to deal with time sequences. In this family, there are two types 44 

which are used in the context of atmospheric sciences: Long Short-Term Memory (LSTM) 45 

layers [15, 16] and Gated Recurrent Units (GRU) [17]. These units are composed of a cell 46 

and gates. The cell has an internal state that retains information over several time instants 47 

and the gates control the flow information into and out of the unit. Other approaches, like 48 

proposed by Shi et al. [18], have explored methods that have both a convolutional struc- 49 

ture and are recurrent. This makes these networks able to deal with a time series of image- 50 

like data. In our context, we will not consider image-like data, so we will focus on FC 51 

feedforward networks and on LSTMs. 52 

 53 
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Therefore, the main goal of this study is the assessment of two extended diagnosis 1 

methods of favourable conditions to fog formation using aerodrome routine meteorolog- 2 

ical reports (METAR) data and compare both performances. 3 

In this article, the airport’s locations, the used data and the diagnosis methods are 4 

described in Section 2. In Section 3, the pre-fog conditions and the main features of fog 5 

events are presented. The two diagnosis methods are assessed using the airports METAR 6 

data and their performance is presented. In Section 4, results from both methods are dis- 7 

cussed and compared. Finally, conclusions are presented in Section 5.  8 

2. Materials and Methods 9 

2.1. Materials 10 

Seventeen years of half-hourly METAR data from the Portuguese mainland interna- 11 

tional airports were used to identify fog events. The dataset was subjected to quality con- 12 

trol after retrieved from the METAR code form, which was generated using observational 13 

practices following the WMO Manual on Codes, Volume I, Part A [9]. From January 2002 14 

to December 2018, the data availability is 99.68% at Porto, 99.9% at Lisbon, and 99.92% at 15 

Faro.  16 

Fog occurrences are identified in the dataset by gathering observations of prevailing 17 

horizontal visibility less than 1000 m, associated with the report of significant weather 18 

phenomenon as fog, in the site or in the vicinity of the airport. The results presented by 19 

Guerreiro et al. [7] have shown that fog seldom occurs at Faro. In the period of 2002-2018, 20 

the daily fog occurrences were less than 1% (0.97%), while at Porto and Lisbon were 9.68% 21 

and 5.15% respectively. Therefore, Faro airport is discarded from this study, and only the 22 

2019 data from Porto and Lisbon will be used in the methods’ assessment.  23 

2.2. Methods 24 

2.2.1 Forecast score 25 

At both airports, the classification of fog into precipitation, advection, cloud base 26 

lowering, radiation, and evaporation types was performed by Guerreiro et al. [7]. Each 27 

type associates an observed parameter to a primary mechanism that triggers the formation 28 

of fog. From the METAR data, the wind drives the advection and the turbulent mixing, 29 

decreasing of temperature measures the cooling rate, and dew point is used to compute 30 

relative humidity, that quantifies the amount of water vapor available for condensation. 31 

The departure point of the diagnosis method is the statistical method proposed by 32 

Menut et al. [11] used to estimate the probability to detect observed radiation fog events. 33 

The forecast score computed using meteorological key parameters reflects the relationship 34 

between the meteorological conditions and the formation of fog. Since the method is fo- 35 

cused on the detection of radiation fog, the pre-fog conditions are characterized by the 36 

key variables of relative humidity measured at 2 m height, 2 m temperature tendency, 10 37 

m wind speed and infrared radiation budget. The METAR does not include infrared radi- 38 

ation data. Therefore, in this study, the key variables are relative humidity (RH), 3-hour 39 

temperature tendency (ΔT), and wind speed U(t), regarding any type of fog. 40 

The forecast scores αkv, between 0 and 1, and they are dependent on the distance be- 41 

tween the observed values of the key variables and the respective thresholds, following a 42 

Gaussian distribution [12]. These reference values are set by the key variables average in 43 

the fog events period. The scores are computed as 44 

𝛼𝑘𝑣 = {

1                    , 𝑘𝑣 ≤ 𝑡ℎ𝑘𝑣

𝑒𝑥𝑝 [−
(𝑘𝑣 − 𝑡ℎ𝑘𝑣)2

2𝜎𝑘𝑣

] , 𝑘𝑣 > 𝑡ℎ𝑘𝑣
 (1) 

where kv are the key variables and thkv the respective thresholds.  45 
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At a specific observed moment t, the forecast scores αkv are computed regarding the 1 

relative humidity RH(t), the wind speed U(t), and the 3-hour temperature tendency 2 

ΔT=T(t)-T(t-3h). 3 

The diagnosis of the fog formation is finally computed as 4 

𝛼 =  𝛼𝑅𝐻 × 𝛼∆𝑇 × 𝛼𝑈. (2) 

For α ≥ 0.9, the forecast score method states that meteorological conditions, at time t, 5 

will favour the formation of fog, later in the following 6-hours period (t+6h), designated 6 

as pre-fog period as well [11, 12]. The forecast score is computed to each time step in the 7 

pre-fog period of the fog events detected in 2019. Since α diagnoses the formation of fog 8 

up to six hours, from each time step, it means that its performance varies from the moment 9 

of the fog onset, the worst estimation, up to six hours prior to the onset, the best estima- 10 

tion. Therefore, when the estimates are α ≥ 0.9, we consider that a pre-fog epsiode is pre- 11 

sent; if α ≤ 0.9, then we consider that there are no pre-fog conditions. 12 

2.2.2 Neural Networks 13 

Neural networks offer the theoretical advantage of not assuming any a priori infor- 14 

mation about the statistical distribution of the input data. Nonetheless, the performance 15 

of a given network depends on the type of data and on correctly formatting the data. One 16 

of the factors is whether the input is a single data point (e.g., one image at a time) or a 17 

temporal sequence of data.  18 

The dataset consists of sequential observations of different variables, therefore, we 19 

decided to use a network based on LSTM units, as presented in [19], to explore the time 20 

dependence. To assess if there was really any advantage, we compared the performance 21 

with a neural network with similar complexity but based on FC neurons. We denote the 22 

input data for the time instant 𝑡′  as 𝑋𝑡=𝑡′ = [𝑥𝑡=𝑡′
𝑓𝑒𝑎𝑡𝑢𝑟𝑒=1

𝑥𝑡=𝑡′
𝑓𝑒𝑎𝑡𝑢𝑟𝑒=2

… 𝑥𝑡=𝑡′
𝑓𝑒𝑎𝑡𝑢𝑟𝑒=𝑁] , 23 

where 𝑥𝑡=𝑡′
𝑓𝑒𝑎𝑡𝑢𝑟𝑒=1 , 𝑥𝑡=𝑡′

𝑓𝑒𝑎𝑡𝑢𝑟𝑒=2up to 𝑥𝑡=𝑡′
𝑓𝑒𝑎𝑡𝑢𝑟𝑒=𝑁  are the different features in that time in- 24 

stant. As presented in Figure 2 a), the input vectors for each time instant are supplied 25 

sequentially to the LSTM-based NN to create an estimate �̂�𝑡=𝑡′. This estimate is whether 26 

there will be fog onset in the interval 𝑡 = 𝑡′ up to 𝑡 = 𝑡′ + 6 ℎ𝑜𝑢𝑟𝑠. For the case of the FC 27 

NN, all the input data is stacked and provided to the NN in one shot, as depicted in Figure 28 

2 b). 29 

 30 

  

(a) (b) 
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Figure 2. Representation of how the input data is fed to distinct types of networks: (a) In the 1 
case of the LSTM-based NN, at each time instant t, the features from that correspondent instant 2 
are provided. The estimate ŷ in the time instant t, is then generated not only based on that 3 
input but is also considering the previous instants; (b) For the case of FC networks, the output 4 
is calculated based on all features corresponding to a finite number of time instants. Unlike the 5 
LSTM-based NN, in the FC case, there is no information about which time instant a given value 6 
was observed. 7 

Another factor is the range of values assumed by the input, since NN are usually 8 

designed to deal with normalized data. Additionally, the visibility features (one of the 9 

most important in our problem) has most of the occurrences with very high values and 10 

occasionally decreases one order of magnitude, which correspond to fog. In general, the 11 

normalization approach that was followed consists in a subtraction of the average value 12 

and dividing it by the standard deviation. Both these values correspond to the average 13 

and standard deviation calculated in the training data. This yields to negative and positive 14 

values around 0. 15 

At last, despite not explicitly selecting key variables as in the previous section, some 16 

caution must be devoted to curate the data before providing it to the network. For in- 17 

stance, the dataset had 25 parameters, but we combined them into 13. These combinations 18 

consist in transforming some features into new ones which are more meaningful to the 19 

fog occurrence. For instance, we combined the month and day of the month into only one 20 

variable with a periodic behavior by computing.  21 

𝑥𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟 =  
2𝜋

12
cos (𝑚𝑜𝑛𝑡ℎ +  

𝑑𝑎𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑛𝑡ℎ

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑛𝑡ℎ
) . (3) 

The main idea of this operation is that, for example in the last days of December will have 22 

a similar value to the first days of January, thus is expected to have a similar contribution 23 

to the prediction of weather phenomena. We did a similar operation with the hours and 24 

minutes, creating a signal with a period corresponding to 24 hours. 25 

𝑥𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑦 =  cos ((60 × ℎ𝑜𝑢𝑟 + 𝑚𝑖𝑛𝑢𝑡𝑒𝑠)  ×  
2 𝜋

1440
)  (4) 

We also transformed the wind intensity and direction into two components, one aligned 26 

with North-South, and another aligned with East-West. At last, we did not consider the 27 

data regarding cloud layers above the lowest layer. 28 

After the data curation, a given network configuration must be designed. The main 29 

building block for the recurrent network is the LSTM cell. This cell contains a cell state c, 30 

receives an input z and computes an output ŷ. The LSTM cell also contains gates that 31 

allow or block the flow of information into and out of the cell and the update of the cell 32 

state. The amount of information allowed by input gate 𝑖, output gate 𝑖 and forget gate 33 

𝑓 at time instant t is defined as  34 

𝑓𝑡 = 𝜎𝑔(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓 ℎ𝑡−1 +  𝑏𝑓) (5) 

𝑖𝑡 = 𝜎𝑔(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖  ℎ𝑡−1 +  𝑏𝑖) (6) 

and  35 

𝑜𝑡 = 𝜎𝑔(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜 ℎ𝑡−1 +  𝑏𝑜) (7) 

where 𝑊 represent weight matrices that connect two quantities (e.g., 𝑊𝑍𝑂 connects the 36 

input of the cell with the output gate) and 𝑏 correspond to bias. 37 

With this building block one can build arbitrarily complex network, with several cells 38 

in parallel and multiple consecutive layers. However, to assess the impact of the network 39 

design choices, we started with a simple network with only two LSTM layers. The first 40 

layer contains several cells in parallel and receives the input 𝑋𝑡. The second layer only has 41 
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one cell, receives the output of the first one and calculates the network’s final output. We 1 

also compared the resulted obtained with a FC layer, also with only two layers and the 2 

same number of neurons as the number of cells in the LSTM-based network. As men- 3 

tioned previously, the FC network deals with a limited number of time instants. Addi- 4 

tionally, during training, the LSTM-based network is presented with multiple samples, 5 

each one comprising observed features from several time instants. We have designated 6 

this amount as time horizon. To understand, the impact of the time horizon on the perfor- 7 

mance, we have also tested several values. 8 

The task considered in this work is to predict the first fog observation (fog onset) in 9 

the next six hours, therefore, for the training of the neural network, we have framed this 10 

as a classification problem. With this framework, at training time, we not only provide the 11 

observations X from METARs but also the 𝑌, which is a binary value. We have used a 12 

common loss function for this type of problem, the binary cross-entropy. 13 

2.2.3 Performance indicators 14 

Using classical forecast score parameters, such as hit rate, false alarm, miss and cor- 15 

rect reject, the model performance is evaluated from the following contingence table (Ta- 16 

ble 1), according to the model output and the fog observations. To simplify the interpre- 17 

tation of the results, we normalize the previously mentioned score parameters. Thus, we 18 

will present hit rate which corresponds to the frequency of correct prediction of fog over 19 

the total number of fog occurrences, false alarm rate corresponds to the frequency of in- 20 

correct fog prediction over the total number negative samples (no observed fog). We also 21 

present miss rate and true negative rate, which are the complementary values of hit rate 22 

and false alarm rate, respectively. 23 

Table 1. Forecast performance indicators obtained from the combination of the model output and 24 
the fog observations. 25 

 Observed Not observed 

Fog forecasted HIT RATE (HR)  FALSE ALARM RATE (FAR) 

Absence of fog MISS RATE (MR) TRUE NEGATIVE RATE (TNR) 

3. Results 26 

Results obtained for both methods were obtained by using the METAR data corre- 27 

sponding to the period from 2002 to 2018 as training samples. Additionally, both methods 28 

were also applied in two different locations independently: Porto and Lisbon.  29 

After the training stage, both the forecast score method and NN-based method were 30 

tested in METAR data gathered during 2019. Lisbon’s dataset contains 17519 samples 31 

while there are two less samples in Porto’s dataset. From the fog observations, 56 episodes 32 

were identified in Porto and 25 in Lisbon. Since our goal is to identify the pre-fog condi- 33 

tions, we want to classify as 1, each of the six hours before a fog episode. All other esti- 34 

mates outside the pre-fog period (fog episodes observations and no fog observations) 35 

should be classified as 0. This yields 663 ground truth samples classified as 1 and the re- 36 

mainder classified as 0. 37 

3.1. Forecast score 38 

In the forecast score method, the diagnosis of fog starts after the third hour from the 39 

first observation due to the 3-hour temperature tendency. Therefore, the estimation of pre- 40 

fog, as well as the absence of fog, is performed over 17511 observations at Porto and 17513 41 

at Lisbon.  42 

The following contingency table (Table 2) reflects the performance of the forecast 43 

score method through the indicators from Table 1. 44 
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Table 2. Performance indicators of the forecast score’s method. 1 

 Porto Lisbon 

 Observed Not observed Observed Not observed 

Fog forecasted 17.19% 6.34% 5.57% 0.84% 

Absence of fog 82.8% 93.66% 94.43% 99.16% 

The method’s performance at Porto presents a HR of 17.19%, and 5,57% at Lisbon. At 2 

both airports, the FAR is considerable low, being residual at Lisbon (0.84%), due to many 3 

true negative diagnoses. The MR indicator reveals the method’s weakness of forecasting 4 

fog, with 82.8% at Porto and 94.43% at Lisbon. 5 

3.2. Neural Network-based method 6 

The evaluation of the NN-based method had several objectives. The first was to as- 7 

sess the benefits of using an LSTM over a FC NN. The second was to measure the impact 8 

of using input sequences of variable length. Thirdly, we wanted to determine the sensi- 9 

tivity of the NN to the different input variables (observations in the METAR correspond- 10 

ing to temperature, dew point and visibility). Lastly, we wanted to compare with the Fore- 11 

cast Score method. 12 

In Table 3, we present the cross-entropy loss as well as other that was obtained for 13 

each configuration for both Porto and Lisbon airports. Each of the network configurations 14 

was fed with sequences of input data of variable length (6, 12, 24, 48 and 72 time instants). 15 

Table 3. Performance indicators obtained for each network configuration in Porto and Lisbon, when 16 
considering the test dataset (METAR observations from 2019).  17 

Network 

type 

Sequence 

length 

Cross-en-

tropy loss 

HR 

(%) 

FAR (%) MR 

(%) 

TNR 

(%) 

LSTM-based 

NN - Porto 

6 0.02857 47.5 4.3 52.5 95.7 

12 0.02800 47.7 3.8 52.3 96.2 

24 0.02800 49.3 3.7 50.7 96.3 

48 0.02829 52.0 4.1 48.0 95.9 

72 0.02853 49.3 3.7 50.7 96.3 

FC NN – 

Porto 

6 0.02835 44.6 3.5 55.4 96.5 

12 0.02851 47.7 3.8 52.3 96.2 

24 0.02867 45.2 3.7 54.8 96.3 

48 0.02914 39.6 3.1 60.4 96.9 

72 0.02895 38.8 3.2 61.2 96.8 

LSTM-based 

NN – Lisbon 

6 0.01364 50.0 3.1 50.0  96.9 

12 0.01443 48.9 3.5 51.1 96.5 

24 0.01395 51.8 3.2 48.2 96.8 

48 0.01411 46.3 3.3 53.7 96.6 

72 0.01385 51.5 3.5 48.5 96.5 

FC NN - Lis-

bon 

6 0.01363 47.8 3.3 52.2 96.7 

12 0.01387 43.8 2.9 56.2 97.1 

24 0.01358 47.4 3.1 52.6 96.9 

48 0.01376 51.1 3.0 48.9 97.0 

72 0.01419 44.9 3.2 55.1 96.8 

As shown in Table 3, LSTM based network achieved higher HR than the fully connect 18 

network, for both locations. Another interesting aspect is that the performance depends 19 

on the number of past METAR observations (sequence length) which are provided to the 20 

NN. The results show that the sequence length that produces best results is an intermedi- 21 

ate value. This value was 24-time instants for the LSTM-based NN. 22 
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4. Discussion 1 

The low HR of 17,19% at Porto and 5,57% at Lisbon are followed by a MR of 82,8% 2 

and 94.43%, respectively. Despite of low FAR (6,34% and 0,84%), the method is strongly 3 

penalized by high MR values These results are far from the diagnosis effectiveness of 87% 4 

obtained by Menut et al. [11] and Román-Cascón et al. [12] in radiation fog forecasting. 5 

The diagnosis method applied to the airport’s observational data is constrained by the 6 

meteorological variables provided by METAR, where the relative humidity, the wind 7 

speed and the 3-hour temperature tendency are the key variables.  8 

The results obtained with the NN-based methods showed that the recurrent network 9 

(based on LSTM) achieved a better result than the FC network. This indicates that the 10 

recurrent network is more suited to problems with sequential data, where there is a tem- 11 

poral dependence between the data. While the FC network also receives the same amount 12 

of data, its performance suffers as more time instants are considered. When 72-time in- 13 

stants are used, the number of weights in the FC network increases significantly and be- 14 

comes harder to train the NN. For the case of the LSTM, the performance decreases 15 

slightly. We believe that this was caused mainly by the difficulty of propagating the error 16 

over such a long sequence (during the training stage) and not because of an increase in 17 

the number of weights. 18 

One aspect highlighted by the results of the NNs is that there is an optimal value for 19 

the sequence length. This value was 24-time instants for the LSTM-based NN. This value 20 

corresponds to approximately 12 hours of observations, which is a time interval relevant 21 

to the formation of fog. 22 

When considering the HR, FAR, MR and TNR obtained by the neural networks, the 23 

results are encouraging, especially if we consider that the FAR is relatively low. Even 24 

though the HR is not very high (and consequently the MR is higher than what would be 25 

desirable), we must consider that for each fog episode there are hourly estimates for a 26 

period of six hours before the episode.  27 

5. Conclusions 28 

The forecast score’s method evaluation shows that the performed diagnosis of the 29 

pre-fog period, barely capture the pre-fog conditions that favour the formation of fog. The 30 

METAR’s key variables are unable to explicit the primary mechanisms of the fog onset. 31 

The NN-based methods showed an interesting performance, outperforming the fore- 32 

cast score’s method. These results are especially encouraging because very simple net- 33 

works where considered, with only two layers (FC and LSTM). The results that were ob- 34 

tained also showed that the recurrent networks are preferable, over fully connected, to 35 

deal with this type of problem. On the other hand, NN’s results also have some limita- 36 

tions. Much more combinations of layers, architectures and parameters should be consid- 37 

ered in the future to fully characterize the potential of NN to perform prediction based on 38 

METAR data. This characterization should also include an ablation study to determine 39 

the sensitivity of the network to different parameters like temperature or humidity.  40 
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