

Hybrid poly(vinyl acetal)s / silica nanoparticles thin films for optical sensing of humidity

K. Lazarova¹, S. Bozhilova², S. Ivanova², T. Babeva¹, D. Christova²,

¹Institute of Optical Materials and Technologies 'Acad. J. Malinowski'', Bulgarian Academy of Sciences, Akad. G. Bonchev str., bl. 109, 1113 Sofia, Bulgaria ²Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev str., bl. 103-A, 1113 Sofia, Bulgaria

E-mail: klazarova@iomt.bas.bg

A possible approach for enhancement of PVA humidity sensing performance using hydrophobically modified PVA copolymers is studied. Series of poly(vinylalcohol-co-vinylacetal)s (PVA-Ac) of acetal content in the range 18-28 % are synthesized by partial acetalization of hydroxyl groups of PVA with acetaldehyde. Thin films of PVA-Ac and PVA-Ac doped with SiO₂ are deposited by spin-coating using silicon substrates. Sensing properties are probed through reflectance measurements at relative humidity in the range 5-95 %RH. The influence of film thickness and concentration of SiO₂ nanoparticles on hysteresis, sensitivity and accuracy/resolution of humidity sensing is studied for partially acetalyzed PVA copolymer films and comparison with neat PVA is made. Enhancement of sensing behavior through preparation of polymer-silica hybrids is demonstrated.

Copolymer synthesis and characterization

Four PVA-Ac copolymers of different composition were synthesized varying PVA-toacetaldehyde molar ratio. The reaction scheme and chemical structure of the obtained PVA copolymers is shown here

Transmittance,

Thin film deposition. Optimization of thickness and post-deposition annealing

> Obtained poly(vinylalcohol-co-vinylacetal)s are smart materials exhibiting reversible phase transition in aqueous solution with increasing temperature. The higher the acetal content, the higher the hydrophobicity and the lower the phase transition temperature.

> The dimensional changes of films pre-annealed at 180°C are smaller as compared to the case of 60°C especially for the neat PVA films where the decrease of swelling is almost 7 times. \succ The smallest *H*-values (4.3 % and 3.8 %) are achieved for PVA-modified samples (80 nm) with acetal content of 18 % and 24 %, pre-annealed at 180 °C and 60 °C, respectively.

Humidity sensing

Clouding curves of the obtained copolymers registered in transmittance mode at 500 nm

~ 80

60 40 20 20

Reflectance versus relative humidity curves for films with 24 % and 18 % acetal content (80 nm thick), pre-annealed at 60 °C and 180 °C, respectively, measured for increasing (RH up) and decreasing (RH down) humidity.

- Reflectance for Ac18 is almost the same for wide humidity range (5-60 %RH) and starts to increase exponentially for RH>60%.
- For sample Ac24 two linear dependences of R-vs-RH plot with different slopes are well distinguished. The sensitivity is 0.03 for RH = 5-65 % and increases to 0.14 in the range 65-95 %RH.

Sample	Sensitivity (%/% RH)	Accuracy (%RH)	Humidity Range	
AC18 (180°C)	0.07 0.3	1 4	60-84%RH >84%RH	Most appropriate for humidity sensing is Ac24 sample (PVA modified with 24% acetal) with thickness of 80 nm pre- annealed at 60°C.
AC24 (60°C)	0.03 0.14	10 2	5-65%RH >65%RH	

Selected for best performance PVA-Ac modified with 24% acetal is doped with two different concentrations of SiO₂ nanoparticles - 20% and 50%. Thin films are deposited by spin-coating and annealed at 60°C.

Sample

Percentage of hysteresis, H and relative change of film thickness, $\Delta d/d$ due to humidity exposure from 5 to 95%RH for polymer films (about 80 nm in thickness) with 24 % acetal content (Ac24) doped with 20% (Ac24p1) and 50% (Ac24p2) SiO₂ particles.

Relative Humidity (%)

Reflectance versus relative humidity curve for films with 24% acetal content doped with 20% and 50% SiO₂ particles measured for increasing (solid black symbols) and decreasing (open blue symbols) humidity.

- The swelling decreases with doping.
- Percentage of hysteresis, H decreases more than twice for 20 % doped sample.

Conclusions:

The sample doped with 20 % SiO₂ particles has full dynamic range and linear dependence of the measured signal as a function of relative humidity. The accuracy of measurements is 10 %RH.

- 1. The successful humidity sensing application of thin films of hydrophobically modified PVA copolymers, namely poly(vinylalcohol-co-vinylacetal)s (PVA-Ac) of acetal content in the range 18-28% is demonstrated.
- 2. A decrease of hysteresis, increase of sensitivity and widening of dynamic range are observed for modified films as compared to the neat PVA film.
- 3. The best sensor characteristics are obtained for films modified with acetal content around 24 % with 80 nm thickness and post-deposition annealing temperature of 60°C.
- 4. A doping of PVA-Ac (24 %) with silica particles (20 % and 50%) is utilized.
- 5. Humidity sensitive hybrid films have thickness values around 80 nm that guarantees fast sensing.
- 6. The hybrid thin film samples have full dynamic range and linear dependence of the measured signal in the entire humidity range.

Acknowledgments: S. Bozhilova acknowledge the National Scientific Program for young scientists and postdoctoral fellows, funded by Bulgarian Ministry of Education and Science with PMC No 271/2019. This work was partially supported by the European Regional Development Fund within the Operational Programme "Science and Education for Smart Growth 2014 - 2020" under the Project CoE "National center of mechatronics and clean technologies" BG05M2OP001-1.001-0008-C01.