

Foods The 2nd International Electronic Conference on Foods **2021** Future Foods and Food Technologies for a Sustainable World

Castanea sativa shells: Is cosmetic industry a prominent opportunity to valorise this agro-waste?

Diana Pinto¹, María de la Luz Cádiz-Gurrea¹, Vitor Freitas², Paulo Costa³, Bruno Sarmento^{4,5}, Cristina Delerue-Matos¹, and Francisca Rodrigues^{1,*}

¹REQUIMTE/LAQV - Polytechnic of Porto - School of Engineering, Portugal; ² REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal; ³ REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal; ⁴ i3S – Institute for Research and Innovation in Health, University of Porto, Portugal; ⁵CESPU – Institute for Research and Advanced Training in Health Sciences and Technologies, Gandra, Portugal. *francisca.rodrigues@graq.isep.ipp.pt

ex-vivo assays.

RESULTS

1. *In-vitro* antioxidant/antiradical activities

Table 1. In-vitro antioxidant/antiradical activity & radicals scavenging capacity of CS extract prepared by SFE (n = 3).

	FRAP (IC ₅₀ , μg/mL)	DPPH (% Inhibition)	ABTS (mg AAE/g dw) ¹	O 2 ^{•-} (IC ₅₀ , μg/mL)	HOCl (IC ₅₀ , µg/mL)	NO• (IC ₅₀ , μg/mL)
CS extract	204.79 ± 4.33	53.04 ± 6.75	124.84 ± 4.53	$49.42 \pm 0.41^{2,a}$	1.57 ± 0.10^{a}	0.76 ± 0.11^{b}
Catechin	-	-	-	$48.99 \pm 0.75^{\rm b}$	$0.18 \pm 0.01^{\circ}$	0.95 ± 0.04^{a}
Gallic acid	-	-	-	$5.18 \pm 0.19^{\circ}$	$1.25\pm0.05^{\rm b}$	$0.20 \pm 0.03^{\circ}$

Different letters in the same column indicate significant differences (p<0.05).

2. Hyaluronidase & Elastase inhibitory activities

<u>Hyaluronidase</u> $IC_{50} = 54.36 \text{ mg/mL}$

33.56% inhibition (0.4 mg/mL)

Elastase

DISCUSSION

(Franz cells & human skin)

Valorisation of chestnut shells as a promising cosmetic ingredient

anti-elastase activities

The antioxidant & antiradical properties, as well as anti-hyaluronidase &

- anti-elastase effects suggest that CS extract may be a potential source of antiaging ingredients probably due to the **phenolic composition**, mainly ellagic acid, caffeic acid derivative, catechin, epicatechin & epigallocatechin^[3].
- The best scavenging efficiencies were achieved for NO• & HOCl.
- CS extract is **safe** for skin application in a concentration range of **0.1-100** μg/mL.
- The promising skin permeation outcomes revealed a slow penetration of polyphenols, namely ellagic acid & epicatechin, from CS extract into the skin, inducing a prolonged cosmetic effect.

CONCLUSIONS

This study appraised a new cosmetic ingredient emphasizing its potential to be incorporated in cosmetic formulations as anti-aging ingredient, answering to the sustainable development goals of agenda 2030 of the United Nations & European Regulation n.º 1223/2009.

Acknowledgements: This research was funded by FCT/MCTES through national funds (UIDB/50006/2020) & project PTDC/ASP-AGR/29277/2017, co-supported by FEDER throughout COMPETE 2020 (POCI-01-0145-FEDER-029277). D. Pinto is thankful for her PhD grant (SFRH/BD/144534/2019) financed by FCT/MCTES, POPH-QREN, UE & Fundo Social Europeu. F. Rodrigues is thankful for her contract (CEECIND/01886/2020) financed by FCT/MCTES—CEEC Individual 2020 Program Contract.

References:

1. D. Pinto, M.d.I.L. Cádiz-Gurrea, A. Vallverdú-Queralt, C. Delerue-Matos, F. Rodrigues, Food Res. Int. 144 (2021) 110364. 2. F. Rodrigues, J. Santos, F.B. Pimentel, N. Braga, A. Palmeira-de-Oliveira, M.B.P.P. Oliveira, Food Funct. 6 (2015) 2854-2860. 3. D. Pinto, M.d.I.L. Cádiz-Gurrea, S. Sut, A.S. Ferreira, F.J. Leyva-Jimenez, S. Dall'Acqua, A. Segura-Carretero, C. Delerue-Matos, F. Rodrigues, J CO2 Util. (2020) 101194.