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Abstract: Excavator’s main tasks include digging, trenching, and ground leveling at construction 

sites, as well as work efficiency and safety can be improved by using an autonomous excavator. A 

prerequisite step to achieving an autonomous excavation is to obtain a sound perception of the sur-

rounding ground. For this, a LiDAR sensor has been widely used to scan the environment. How-

ever, the point cloud generated by the LiDAR is not ideal for surface reconstruction to generate a 

ground map, as it suffers from flaws such as noise and outlier points. To tackle this issue, our paper 

proposes advanced methodologies for surface reconstruction algorithms. 
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1. Introduction 

An autonomous excavator requires perception about its surrounding environment. 

For various excavation tasks, a LiDAR sensor can be used to scan the surface at digging 

sites and to generate a corresponding ground map in a point cloud format. However, sur-

face reconstruction is a challenging task and its difficulty varies depending on the distri-

bution of points. In particular, surface reconstruction with scatter data is more challenging 

[1] and most methods fail to converge to a hole-free and complete surface. As an example 

of the existing approaches in surface reconstruction, the proposed algorithms in [2,3] re-

quire knowledge about the connectivity of unordered points in space. The authors in [4,5] 

provided neural network-based approaches to optimize the reconstructed surface. As an 

alternative solution, the optimization method needs significant computing power, and is 

therefore not suitable for semi-real-time applications such as autonomous excavators. The 

rest of this paper describes the design of the proposed novel method for surface recon-

struction, along with validation results and concluding remarks. 

2. Point Cloud Enhancement 

In this paper, a Velodyne Puck (VLP-16) LiDAR with 16 laser channels was used to 

obtain point cloud data from the targeted surroundings (ground). The LiDAR sensor fires 

lasers sequentially through channels and reports the obstacle’s distance from its center. 

Depending on the objects in the environment, each laser firing may produce multiple re-

flections. The selected LiDAR has two options: ‘Last’ and ‘Strongest’. In the Last option, 

the distance with the farthest reflection of the laser beam is reported, while the Strongest 

option reports the distance with the highest intensity reflection. This study chose the Last 

option because the digging ground is always the last visible object in the environment and 

the Strongest option may allow the light to return from particles or dust in the environ-

ment rather than from the ground. 
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2.1. Coordinate Systems 

The LiDAR sensor reports the points in polar coordinates. The azimuth for this coor-

dinate can be defined by the sensor’s encoder at the start of a firing sequence. The eleva-

tion is predefined by the manufacturer and depends on the laser channel’s number. Fi-

nally, the distance is the same as that measured by the sensor. Data points in polar coor-

dinates can be translated into Cartesian coordinates using equations provided by the man-

ufacturer. We investigated which coordinate system fits better for the surface reconstruc-

tion as follows. 

2.1.1. Cartesian Coordinates 

At the first glance, mapping point cloud data and applying surface reconstruction 

methods in x, y, and z Cartesian coordinates may seem convenient and yield proper re-

sults because Cartesian coordinates are more intuitive. A major limitation of Cartesian 

coordinates is that their data points are likely to be unordered. Specifically, there is no 

relationship or sequence between individual data points. Thus, the method of surface re-

construction must attempt to connect scattered points in the space to form a surface. 

Some approaches and strategies for this purpose require prerequisites such as de-

noising, normal vectors, and non-uniformity and outliers [6]. However, they are mainly 

unavailable while using LiDAR sensors. Thus, a completely closed surface is not guaran-

teed. 

2.1.2. Polar Coordinates 

Processing data in polar coordinates has the main advantage that data points can be 

arranged in an evenly distributed pattern, ensuring the generation of a valid and hole-free 

surface. Thus, polar coordinates were chosen for surface reconstruction using the follow-

ing curve approximation method. 

3. Curve Approximation Method 

The LiDAR sensor senses and reports a series of paired azimuth and distance data 

for each elevation angle. As shown in Figure 1, the distance data may contain noises and 

outliers. So, the initial step for surface reconstruction is to apply a curve approximation to 

retain the shape of the ground while discarding the noises and outliers. Additionally, hav-

ing an analytical equation rather than a series of data helps in evaluating the ground shape 

at any azimuth angle rather than relying solely on the azimuth data reported by the Li-

DAR sensor. To evaluate the performance of the proposed method, tests were carried out 

on an inclined plane with two bumps. 

 

Figure 1. Representation of point cloud in polar coordinates. 

In this paper, the cubic Bezier curve was applied to approximate the surface curves. 

The cubic Bezier curve has 4 control points as seen in Equation (1) where the control points 

of P0 and P3 match exactly the initial and final data points. Thus, the optimization process 

adjusts only the x and y positions of P1 and P2 control points to reduce the absolute error 

between the actual data set and the approximated curve. 
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B(t) = (1 − t)3P0 + 3(1 − t)2tP1 + 3(1 − t)t2P2 + t3P3   0 ≤ t ≤ 1 (1) 

Pi = {Pix, Piy}   i = 0, 1, 2, 3 (2) 

where B(t) is the Bezier curve. t is the progress. Pi represents the ith control point. Pix and 

Piy are the x and y position of the ith control point. 

Figure 2 represents the approximated cubic Bezier curve on 4 different laser channels. 

  

  

Figure 2. Curve approximation on raw data sets. 

4. Surface Reconstruction 

Following the approximation of a single curve for each laser channel, the next step is 

to stitch the individual approximated curves together to make a single map. For this, a 

linear interpolation between neighbor curves was used. A series of points in polar coordi-

nates were evaluated from the approximated surface, and then they were converted into 

Cartesian coordinates to generate the actual ground shape in Cartesian space. 

Figure 3 illustrates the result of surface reconstruction in polar coordinates after ap-

plying the above steps. 
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Figure 3. Result of surface reconstruction in polar coordinates. 

5. Result 

Figure 4a shows the result of converting the raw data points that were reported by 

the LiDAR, from polar coordinates to Cartesian coordinates. Figure 4b represents the ap-

proximated surface in Cartesian space that is converted from Figure 3. 

  
(a) (b) 

Figure 4. Result of surface reconstruction in Cartesian coordinates (a) Raw (original) point cloud (b) Reconstructed surface. 

The maximum deviation of the approximated curve from the original surface is about 

22 cm. Also, the total required time for surface reconstruction is about 0.5 s. 

6. Conclusions 

The study proposes a curve approximation-based method to reconstruct the surface 

of digging ground using data sets from a LiDAR sensor. A key feature of this method is 

to offer the benefit of overcoming the problem of data point disorder in Cartesian coordi-

nates and reducing computation time, which enables autonomous excavators to identify 

dynamic changes in the environment. 

Therefore, implementing the proposed surface reconstruction methods in the exca-

vation application will allow for better identification of the ground shape and provide a 

solid foundation for the generation of optimal trajectory, accurate tracking control, and 

safety evaluation that are required for completing a successful autonomous excavation. 
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