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Abstract: Operational modal analysis (OMA) is required for the maintenance of large-scale civil 

structures. This paper developed a novel methodology of non-contact-based blind identification of 

modal frequency of a vibrating structure from its video measurement. There are two stages in the 

proposed methodology. The first stage is extracting the motion data of the vibrating structure from 

its video using a complex steerable pyramid. In the second stage, the principal component analysis 

combined with analytical mode decomposition is used for modal frequency separation from the 

motion data. Numerical validation of the methodology on a 10 DOF model is presented. The appli-

cation of the proposed methodology on the London Millennium Bridge is also presented. 

Keywords: vibration measurement; video camera; multi-scale decomposition; complex steerable 

pyramids; principal component analysis; analytical mode decomposition 

 

1. Introduction 

In structural health monitoring (SHM), modal analysis of structures is considered an 

important aspect. The operational modal analysis (OMA) relies only on the response data 

collected from the sensor attached to the structure, independent of the force excitation [1]. 

Modal parameters depend on the accuracy of the data collected from the sensors attached 

to the structure. Sensors commonly used for the OMA are contact accelerometers, adding 

additional mass to the structure. These mass loading effects can be corrected, but they are 

not accurate [2]. Physically attached sensors have proved that spatial resolution of the 

measurement critically limits the effectiveness of standard mode shape-based damage de-

tection and localization methods [3]. Non-contact methods of OMA overcame the draw-

backs of the sensor-based measurement. Microwave interferometers are used to analyzes 

the interference reflected off the vibrating target surface for displacement response [4]. 

Laser Doppler vibrometer (LDV) measures the velocity of a point projected by a focused 

laser beam, using the doppler shift between the incident and scattered light returning to 

the measuring instrument [5–7]. LDV provides accurate results and can be used to find 

the modal parameters of structures that are inaccessible. However, microwave interfer-

ometers and LDV are expensive. Other methods through computer vision techniques, 

such as Digital Image Correlation and 3-Dimensional point tracking techniques, can esti-

mate modal parameters from a video measurement. However, these techniques require a 

speckle pattern/markings placed on the structure [8,9]. 

An alternative non-contact measurement system is to practice the computer vision 

technique using a digital high-speed video camera which is low-cost, convenient and de-

sired for high-resolution measurement. Generally, civil structures like bridges and other 

large structures have a low natural frequency, so cameras capable of recording video 30 

frames per second (FPS) can be used. The video should neither have disturbances nor 
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artifacts. The spatial domain consists of pixel information such as intensity levels, whereas 

the temporal part contains the framerate of image sequences in a video. Pixels of each 

frame contain the motion data of the objects in the video, which can be magnified using, 

a phase-based video motion magnification technique can magnify the local motions of 

objects and translate the noise present in the video [10]. It enables to refer to the subtle 

motions, which are hard to perceive through naked eyes. Each frame in the video is de-

composed to multi-scale and multi orientations using complex steerable pyramids [13]. 

The multi-scale decomposition of the video frames enables measuring phase information 

of each frame, which can be manipulated to magnify the motion in the video. Phase-based 

video motion magnification works as a base for many methods like modal identification 

of simple structures [12], OMA of a light pole-viaduct system [13,14]. Recently, Yang et al. 

[15] proposed a BSS technique using PCA and a complexity pursuit algorithm. 

In this paper, a computer vision-based vibration measurement of the structures using 

the PCA and analytical mode decomposition (AMD) methods for blindly identifying the 

modal frequencies. Firstly, the current methodology is validated on a 10 degree of free-

dom (DOF) system numerical model and the proposed methodology is applied to the 

practical field measurement videos of the London Millennium Bridge and natural fre-

quencies are extracted. The obtained results are in good agreement with the reference sen-

sor values. 

2. Methodologies 

The two main methodologies are implemented in this study to obtain the modal fre-

quencies from a camera-based video measurement. Figure 1 demonstrates the flowchart 

of the proposed method for OMA using non-contact video measurements with compre-

hensive procedures essential in each step. 

 

Figure 1. Flowchart of the proposed method for OMA using non-contact video measurements. 

2.1. Phase Extraction Using Complex Steerable Pyramids 

The time history response of a structure can be measured from a video, as the frames 

contain the temporally displaced intensity of a pixel represented by I(x+d(x,t)), where x is 

the pixel coordinate and d(x,t) represent spatially local and temporally varying motion. A 

multi-scale and multiband decomposition technique are used to extract the phase d(x,t) 

encoded in the I(x+d(x,t)), is known as the complex steerable pyramid. According to Si-

moncelli and Freeman [11], the steerable pyramid algorithm initially divides a given im-

age into a high-frequency part and a low-frequency part. They are then applying the band-

pass-oriented filters bp sequentially to the low-frequency image followed by down sam-

pling. It forms a pyramid, including high-frequency and low-frequency residuals and lev-

els with certain scales and orientations. 

The phase d(x,t) of each pixel is extracted by constructing the complex steerable pyr-

amids. Phase contains a temporal mean2𝜋𝜔𝑥; after removing the temporal mean, we get 
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𝑑′(𝑥, 𝑡) = 2𝜋𝜔𝑑(𝑥, 𝑡) which can be expressed by modal superposition as a linear combi-

nation of modal responses. 

𝑑′(𝑥, 𝑡) =  𝜙(𝑥)𝑞(𝑡) = ∑ 𝜏𝑖(𝑥)𝑞𝑖(𝑡)

𝑛

𝑖=1

 (1) 

where 𝜙(𝑥) is a mode shape matrix with 𝜏𝑖(𝑥) as the ith mode shape and q(t) is the modal 

response vector with 𝑞𝑖(𝑡) as ith modal coordinate. Equation (1) is overcomplete with 

high spatial dimension (due to large number of pixels) and low modal dimension over the 

complete model, so the modal identification problem cannot be solved directly [15]. The 

dimension of the phase matrix is reduced by PCA and then AMD is used for separating 

the signals. 

2.2. Principal Component Analysis 

The obtained motion matrix is large in terms of the matrix’s data is represented by 

its principal components. So, dimension reduction is accomplished by PCA. The singular 

value decomposition of the motion matrix (𝑑′) is, 

𝑑′ = 𝑈𝛴𝑉𝑇 = ∑ 𝜎𝑖

𝑛

𝑖=1

𝑢𝑖𝑣𝑖 (2) 

where 𝛴 is a diagonal matrix containing t (t is the number of elements) diagonal elements 

𝜎𝑖 as the ith singular value (𝜎1 ≥ … ≥ 𝜎𝑖 ≥ ⋯ ≥ 𝜎𝑇) and U, V are the matrices of the left 

and right singular vectors obtained by eigen value decomposition (EVD) of the covariance 

matrices of 𝑑′.(refer Equations (3) and (4)) 

𝑑′𝑑′𝑇
= 𝑈𝛴2𝑈𝑇  (3) 

The rank of 𝑑′ is r if the number of non-zero singular values is r. σi is directly related 

to the ith principal direction vector of 𝑑′. If its mass matrix is proportional to its uniform 

mass distribution identity matrix for a lightly damped structure, then; principal directions 

will converge to mode shape direction [15]. The structure’s active modes, under broad-

band excitation, are projected on to the r principal components. Empirically, it is observed 

that principal active components are less compared with the matrix’s spatial dimension. 

So PCA significantly reduce the dimension of the motion matrix by projecting it linearly 

onto a small number of principal components. 

𝜁 = 𝑈𝑟
𝑇𝑑′ (4) 

where 𝜁 is a matrix containing principal components of 𝑑′. PCA also reserves the matrix 

𝜁, 𝑑′ is obtained by using, 

𝑑′ = 𝑈𝑟𝜁 (5) 

These principal components contain the information of the dominant frequency 

modes. The average of these principal components is taken as input for analytical mode 

decomposition. 

2.3. Analytical Mode Decomposition 

AMD uses a signal decomposition theorem based on a Hilbert transform. This 

method separates general time series into time functions whose Fourier spectra are non-

vanishing over two mutually exclusive frequency ranges. A bisecting frequency separates 

it with multiple steps. An original time series with multiple closely spaced frequency com-

ponents are decomposed into many signals, each dominated by a single frequency com-

ponent [16]. Let x(t) denote a real-time series of n significant frequency components 
(𝜔1, 𝜔2, … , 𝜔𝑛)all positive in 𝐿2(−∞, +∞) of the real-time variable t. It is decomposed into 

n signals xi(d)(t) (i = 1,2…., n) whose Fourier spectra are equal to �̂�(𝜔) over n mutually 
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exclusive frequency ranges (|𝜔| < 𝜔𝑏1), (𝜔𝑏1 <|𝜔| < 𝜔𝑏2), …, ((𝜔𝑏(𝑛−2) <|𝜔| < 𝜔𝑏(𝑛−1))), 

and ((𝜔𝑏(𝑛−1) < |𝜔|). 

𝑥(𝑡) = ∑ 𝑥𝑖
(𝑑)

(𝑡)

𝑛

𝑖=1

 (6) 

Here, �̂�(𝜔) is the Fourier transform of x(t), 𝜔 represents a frequency variable, and 

𝜔𝑏  ∈ (𝜔𝑖 , 𝜔𝑖+1) (i = 1, 2, …,n-1) are n-1 bisecting frequencies. Each signal has a narrow 

bandwidth in the frequency domain and is be determined by, 

𝑥𝑖
(𝑑)(𝑡) =  𝑔(𝑡) − 𝑔(𝑡), … . , 𝑥𝑛

(𝑑)(𝑡) = 𝑥(𝑡) −  𝑔𝑛−1(𝑡) (7) 

𝑔𝑖(𝑡) = sin(𝜔𝑏𝑖𝑡) 𝐻[𝑥(𝑡) cos(𝜔𝑏𝑖𝑡)] − cos(𝜔𝑏𝑖𝑡) 𝐻[𝑥(𝑡) sin(𝜔𝑏𝑖𝑡)] (8) 

where i = 1, 2, ...., n-1, 𝑔𝑜(𝑡) =  0 and H represents Hilbert transform. 

3. Validation of Proposed Method on Numerical Model 

The proposed method, which uses PCA and AMD to identify the modal frequencies, 

is applied to a 10-DOF model for validating the technique. The twelve DOF model is ex-

cited with an initial velocity at the twelfth DOF, and the output is collected at all the 10-

channels in terms of displacement y(t). The 10-DOF system is represented as masses con-

nected with springs, as shown in Figure 2. 

 

Figure 3. Schematic representation of a 10-DOF dynamic numerical model. 

Among twelve masses, the first (m1) and last (m3) masses are 2 kg, and all masses 

are 1 kg, as represented in Figure 2. The stiffness of all the springs used is 20 KN. The 

damping matrix is taken proportional to the mass matrix. The first four theoretical mode 

shapes are used to construct the new response �̅�(𝑡). The new displacement response �̅�(𝑡) 

is the input for the PCA. The PCA gives the number of components through the eigenval-

ues of the covariance matrix of displacement data, and it identified that there are only four 

active components. The results are shown in Figure 4 and Table 1. 

  
(a) (b) 

  
(c) (d) 

Figure 4. Four different modes of the numerical model identified by the proposed method (a) Mode 

1 frequency-5.3 Hz (b) Mode 2 frequency-10.1 Hz (c) Mode 3 frequency-13.9 Hz (d) Mode 4 fre-

quency-17.7 Hz. 
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Table 1. Comparison of the estimated frequency value with theoretical values. 

Mode 
Frequency (Hz) 

Error % 
Theoretical Estimated 

1 6.25 6.30 0.8 

2 11.45 11.50 0.09 

3 15.62 15.60 0.13 

4 20.03 20.00 0.15 

4. Implementation of Proposed Method on Full-Scale Video Measurement of London 

Millennium Bridge 

The proposed method is implemented on the full-scale field measurement to obtain 

the vibration response of the London Millennium footbridge, also known as the wobbly 

bridge [17]. It is a steel suspension bridge, as shown in Figure 5, and it shows the cropped 

frame of a video [18] to the region of interest used for the blind identification of modal 

frequency. The cropped video has a resolution of 480 p, 480 pixels in width, and 60 pixels 

in height. The number of frames used is 600, with a frame rate of 30 FPS. The bridge sway-

ing occurs as the pedestrians’ walking frequency, and the bridge’s natural frequency 

range matches well. Only three frequencies are detected as the pedestrians walking pat-

tern might have only three dominant frequencies. The three modes are identified from the 

EVD plot from the implementation of the PCA-AMD algorithm. The modal coordinates 

and their frequencies values are presented in Figure 6. The modal coordinates are not ac-

curate and are non-decaying due to the pedestrian’s movement. Table 2 shows the com-

parison between the estimated results with the sensor data, and they are in good agree-

ment with more than 99% accuracy. The results have revealed that the proposed method 

can be extended to other spontaneous robust non-contact OMA structures. 

 

 

(a) (b) 

Figure 5. Frame used for analysis (a) Original Frame (b) Cropped frame used for analysis. 

  
(a) (b) 
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(c) 

Figure 13. Modal coordinates and respective frequency values for Millennium Bridge. (a) Mode 1 

frequency of 0.769 Hz (b) Mode 2 frequency of 1.53 Hz (c) Mode 3 frequency of 2.31 Hz. 

Table 2. Comparison of the estimated frequency value with sensor values. 

Mode 
Frequency (Hz) 

Error % 
From Ref. [17] Estimated 

1 0.77 0.769 0.13 

2 1.54 1.53 0.65 

3 2.32 2.31 0.43 

5. Conclusions 

This study develops a hybrid output-only OMA algorithm that uses PCA and AMD 

to blindly extract the modal frequencies and modal coordinates from line-of-sight video 

measurement of the structures. The 10-DOF dynamic numerical model validation resulted 

in more than 99% accuracy in detecting the modal frequencies. The proposed methodol-

ogy is implemented on practical full-field videos recorded on the London Millennium 

Bridge, resulting in the modal frequencies with an accuracy of 99%. The modal coordi-

nates are non-decaying in nature for the bridges because of the external loading factors. 
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