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Abstract: The inherent errors of low-cost inertial sensors cause significant heading drift that accu- 9 
mulates over time, making it difficult to rely on Pedestrian Dead Reckoning (PDR) for navigation 10 
over a long period. Moreover, the flexible portability of the smartphone poses a challenge to PDR, 11 
especially for heading determination. In this work, we aimed to control the PDR drift under the 12 
conditions of the unconstrained smartphone to eventually enhance the PDR performance. To this 13 
end, we developed a robust step detection algorithm that efficiently captures the peak and valley 14 
events of the triggered steps regardless of the device’s pose. The correlation between these events 15 
was then leveraged as distinct features to improve smartphone pose detection. The proposed PDR 16 
system was then designed to select the step length and heading estimation approach based on a 17 
real-time walking pattern and pose discrimination algorithm. We also leveraged quasi-static mag- 18 
netic field measurements that have less disturbance for estimating reliable compass heading and 19 
calibrate the gyro heading. Addationaly, we also calibrated the step length and heading when a 20 
straight walking pattern is observed between two base nodes. Our results showed improved device 21 
pose recognition accuracy. Furthermore, robust and accurate results were achieved for step length, 22 
heading and position during long-term navigation under unconstrained smartphone conditions.  23 

Keywords: indoor positioning; pedestrian dead reckoning (PDR); inertial sensors; heading drift; 24 
unconstrained smartphone. 25 
 26 

1. Introduction 27 
Location awareness facilitates our daily lives significantly by involving in a wide 28 

range of services, including commercial Location-Based Services (LBS) and life-saving ser- 29 
vices [1]. Outdoors, Global Navigation Satellite Systems (GNSS) provide satisfactory per- 30 
formance that meets most LBS requirements. Indoors, however, GNSS performance de- 31 
grades significantly due to signal blockage and attenuation. Many Indoor Localization 32 
Systems (ILS) have been proposed to fulfill the LBS needs. Portable smartphones are the 33 
most common platforms for existing ILSs [2], thanks to the enormous capabilities of the 34 
embedded sensors and the widespread use of these devices. The Pedestrian Dead Reck- 35 
oning (PDR), based on gait cycle analysis, has been intensively studied in the last two 36 
decades. PDR has gained great popularity as a low-cost and autonomous technique that 37 
relied only on off-the-shelf inertial sensors [1]. A typical PDR scheme consists of three 38 
main components: step detection, step length and heading estimation. PDR provides a 39 
reliable short-term solution can bridge outages of wireless techniques and establish the 40 
system’s model in hybrid systems [3]. However, when PDR has been used as a stand- 41 
alone technique for long-term navigation, its performance degrades rapidly over time due 42 
to the accumulated drift of the gyro heading [1]. In addition, the smartphone flexible port- 43 
ability poses a challenge for PDR owing to the difficulty of predicting the effect of uncon- 44 
strained smartphone on the PDR solution [4].  45 
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In the literature, numerous research efforts have been devoted to enhancing the head- 1 
ing estiamtion [2,5,6]. Regarding gyro heading drift, since this drift cannot be measured 2 
without an external calibration source [1], magnetometer angular rate gravity sensors 3 
(MARG) have been proposed to calibrate this drift [5]. However, Magnetic fields (MF) can 4 
be easily disturbed indoors, leading to severe heading errors. Quasi-Static Magnetic Field 5 
(QSMF) [2] and joint QSMF [6] methods have been devised to capture reliable compass 6 
heading and overcome the high perturbation of MF. However, it is difficult to frequently 7 
capture such QSMF measurements in complex indoor environments filled with electrical 8 
and metallic components. Regarding the unconstrained smartphone conditions, several 9 
studies have been conducted to distinguish the device pose [4,7]. Wang et al [7] extracted 10 
time and frequency domain features from a sliding window of the user acceleration and 11 
angular velocities to distinguish the device pose. In [4], accumulated absolute acceleration 12 
and angle change of roll, pitch and yaw were utilized for pose detection. To assess the 13 
performance of step detection under unconstrained smartphones, thorough comparisons 14 
among different step count approaches have been conducted in [8]. The assessment con- 15 
cluded that the time-based peak detection method is the optimal detection technique re- 16 
gardless of the device pose. Deng et al [9] proposed a robust heading estimation for in- 17 
pocket pose using the Principal Component Analysis (PCA) method. Zheng et al [10] used 18 
the rotation vector sensor to improve the swinging pocket and mode heading estimation. 19 

Despite plentiful research studies, the heading drift and the effects of the uncon- 20 
strained smartphone remain open problems that limit the use of PDR in long-term navi- 21 
gation. In this paper, our overarching aim is to control the PDR drift under the conditions 22 
of the unconstrained smartphone to eventually enhance the PDR performance. To this 23 
end, we developed a robust step detection mechanism that efficiently captured the peak 24 
and valley events of the triggered steps regardless of the device pose. The correlation be- 25 
tween these events was then leveraged as distinct features to improve smartphone pose 26 
detection. The proposed PDR system was then designed to select the step length and head- 27 
ing estimation approach based on the feedback from a real-time walking pattern and pose 28 
discrimination algorithm. Additionally, we leveraged QSFM measurements that have less 29 
MF disturbance to estimate reliable absolute heading. We also calibrated the step length 30 
and heading when a straight walking pattern was observed between two base nodes (i.e., 31 
emitters with predefined location information, e.g., BLE beacons or GNSS observations 32 
with accurate solution). Specifically, our work makes the following contributions: 33 

1. We adopt the pose detection method proposed in [7] by combining the relationship 34 
between the successive peaks and valleys of the triggered steps as a distinct feature 35 
for better detection of the smartphone poses. 36 

2. We mitigated the gyro heading drift employing two calibration methods (i.e., QSFM 37 
and the straight walking between two base nodes).  38 

The remainder of this article is organized as follows: Section 2 discusses the proposed 39 
method. The experimental work and results are presented in section 3. In the last section, 40 
the conclusion is summarized. 41 

2. Methods 42 
Figure 1 shows the framework of the proposed PDR scheme. The methodology sec- 43 

tion is organized as follows: the step detection mechanism is first illustrated since we de- 44 
pend on its results (i.e., the steps peak and valley acceleration values) for the pose detec- 45 
tion that stated after that. The step length and heading estimation approaches are then 46 
explained. Finally, the position estimation and outlier filtering are discussed. 47 

2.1. Step Detection  48 
The time-based peak and valley detection approach was selected to detect the trig- 49 

gered steps regardless of the smartphone pose as recommended in reference [8]. We han- 50 
dled the raw acceleration for the detection task by conducting the following four steps:  51 
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 1 
Figure 1: The Architecture of The Proposed System  2 

1- The effect of the Earth’s gravity was eliminated using a low-pass filter to obtain the 3 
real linear acceleration applying on the device, 4 

2- The optimal axis that provides a strong indication of the step signatures regardless 5 
of the device’s pose was obtained (i.e., the vertical axis relative to the Earth’s surface). 6 
The acceleration applying on this axis was estimated by converting the linear accel- 7 
eration from the Device Coordinate System to the Navigation Coordinate System, 8 

3- The random noise effect was alleviated using a low-pass filter,  9 
4- The peak and valley acceleration for each step were captured based on the gait cycle 10 

characteristics. To ensure excluding the slight hand trembling from being counted as 11 
a step, two thresholds were imposed on the duration and extreme values as follows:  12 

 step th

peak th valley th

δT δT
 

A A  ,A A
≥

 ≥ ≥
, (1) 13 

where stepδT and thδT are the time duration between two adjacent peaks and its thresh- 14 
old, respectively. peak valleyA ,A and thA are the peak, valley acceleration of the detected 15 
step and their threshold, respectively.  16 

2.2. Walking Pattern and Pose Detection 17 
Both the walking pattern (i.e., including straight walking and making a real turn ) 18 

and device poses (i.e., including the handheld, calling, swinging, and in-pocket poses) and 19 
were detected. To recognize the user walking pattern, a real-time turn detection algorithm 20 
was developed based on the maximum difference of the gyro heading change of a sliding 21 
window. Two levels of heading change (i.e., 15° and 40°) were used to determine the start 22 
and end of the real turn. Capturing the turn events precisely enabled us to distinguish the 23 
straight waking pattern and help to control the gyro heading drift while walking straight. 24 

The main concept behind distinguishing the device poses stems from exploiting their 25 
distinct acceleration and device angular change characteristics. The filtered data were in- 26 
adequate to recognize the device pose correctly. Thus, features were extracted from the 27 
handled acceleration and angular change recorded through a sliding window to augment 28 
the detection decision. Based on analysis of the device’s poses’ features conducted in [7], 29 
the following features were extracted from each window:  30 
1. The acceleration variances in x, y, z directions and magnitude ( 2 2 2

ax ay az, ,σ σ σ , 2
aσ ) 31 

2. The angular velocities variances in x, y, z directions and magnitude ( 2 2 2
x y z, ,ω ω ωσ σ σ , 2

ωσ ),  32 
3. The energy spectral density of x, y-axis angular velocity and acceleration ( x z aS ,S ,Sω ω )  33 
In addition, we boosted the above-mentioned features by the acceleration differences be- 34 
tween the successive peaks and valleys ( k k

peak valleyA ,A ), where k is the current step since the 35 
differences between the successive extremes have a distinct range in each pose. Finally, a 36 
decision tree was utilized to decide the devise pose, as can be seen in Figure 2. τ  terms 37 
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are the predefined thresholds for the selected features. Evidence of the difference range of 1 
each devise pose is discussed in section 3, Figure 3.  2 

 3 
Figure 2: Devise Pose Detection Decision Tree.  4 

2.3. Step Length Estimation  5 
The step length was dynamically estimated based on a nonlinear model introduced 6 

in [11], which supposed that the length is nonlinearly correlated with the total vertical 7 
acceleration change of each step as the following formula:  8 

 ( )0 25
0 9= − ≤ ≤

.
k peak valley kL c. A A         0.6 L . , (2) 9 

where peakA and valleyA are the peak and valley acceleration for step k , respectively. c is the 10 
pedestrian’s profile parameter. This model provided reliable step length for specific walk- 11 
ing situations (i.e., when the user carries a smartphone steadily in handheld or calling 12 
pose). In-pocket, swinging hand poses, the total change in vertical acceleration within one 13 
step would prone to sharp fluctuations that do not reflect the step length and lead to false 14 
estimation of the user displacement. In real daily life scenarios, to continuously estimate 15 
a reliable step length, we considered the following circumstances:  16 
1. The false peaks were filtered out to avoid false step length estimation,  17 
2. When the handheld and calling poses were detected the nonlinear model was applied 18 

and the empirical step length was computed and recorded, while in the case of a 19 
swinging hand or in-pocket, the stored mean step length was used, 20 

3. c  was calibrated when a straight walking pattern was observed between two base 21 
nodes with a steady handheld or calling pose. 22 

2.4. Step Heading Estimation  23 
The attitude of the device relative to the user body greatly affects the heading esti- 24 

mation. In handheld and calling poses, the attitude is relatively stable. Thus, the heading 25 
offset between the walking direction and the smartphone’s orientation can be simply es- 26 
timated. In contrast, In swinging and pocket poses, the orientation of smartphone and the 27 
offset varies constantly. Based on that the high variation of the horizontal acceleration is 28 
parallel to the moving direction, the PCA-based approach [9] was leveraged to compute 29 
local headings by estimating the first eigenvector. Since the estimated direction from PCA 30 
fails to distinguish whether the direction is φ or φ+180, we selected the closest angle to 31 
the compass heading to solve this ambiguity. Owing to the low credibility of compass 32 
heading in the short-term solution, we estimated a mean value in a sliding window to 33 
improve the heading robustness. The gyro’ angular velocities were used to estimate the 34 
relative heading change through numerical integration. A weighted heading fusion was 35 
used to combine the absolute compass heading and gyro relative heading based on the 36 
correlation between them and the stability of the compass heading when QSFM is de- 37 
tected. Furthermore, we calibrated the estimated heading when a straight walking pattern 38 
was observed between two base nodes thanks to the ability to detect the turns. 39 

2.5. Position Estimation and Outlier Filtering  40 
The user position was calculated based on the previous position, step length and 41 

heading [7]. To curb the position estimation from the drift that stems from the slight body 42 
shaking, we developed a real-time outlier filtering using the turn detection algorithm. 43 
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When no turn was detected, the random sample consensus method [12] was applied to 1 
construct the optimal parameter of the linear model that fit the walked steps.  2 

3. Experiments and Results  3 
The experiments were conducted in Floor 6 of Block Z at the Hong Kong Polytechnic 4 

University, using Huawei Mate 20 Pro smartphone. A 50 Hz sampling frequency was used 5 
for both accelerometers and magnetometers. A higher sampling frequency~100 Hz was 6 
used for the gyro to estimate accurate heading changes. 7 

To evaluate the PDR performance, each PDR element was tested separately. Regard- 8 
ing the detection of the triggered steps, tests were conducted on a long corridor using four 9 
smartphone poses (handheld, calling, swinging and in pocket). The results for the detec- 10 
tion test considering the handheld pose showed mean and maximum detection error 11 
about 0.6% and 2%, respectively. In calling pose, better detection results were acheivied 12 
with a maximum error of around 1.5%. The swinging pose had a mean error of 2.4%. A 13 
fluctuated performance was observed with in-pocket pose with a higher number of false 14 
extremes, with a maximum error of 3.3%. Figure 3 shows the step detection results with 15 
different poses. The discrimination accuracy of the device pose was about 96.8%, 98.2%, 16 
97.4% and 96.4% using the peak and valley features compared to 96.2%, 93.8%, 97.1% and 17 
95.1% obtained in [7] for holding, calling, swinging and in-pocket poses, respectively.  18 

 19 
Figure 3: Step Detection Performance Under Different Smartphone Poses  20 

A closed rectangular track (see Figure 4) was selected to assess the step length esti- 21 
mation. The walked distance was computed as the sum lengths of the triggered steps. The 22 
results showed that step length estimation approach under device poses recognition ob- 23 
tained a maximum error of 1.8 m with a standard deviation less than 0.9 m for about 75 m 24 
total distance.  25 

 26 
Figure 4: Long-term PDR Performance 27 

The same track was also repeated ten times to evaluate the long-term heading esti- 28 
mation performance. The compass heading had a sharp variation in short-term solution 29 
with maximum error reached 50°. The cumulative gyro heading error approached 90° af- 30 
ter 20 minutes walking. The proposed heading fusion scheme provided robust long-term 31 
heading performance with maximum drift less than 4°. The walking direction was ob- 32 
tained with drift less than 10° in swinging and pocket poses. This drift was calibrated 33 
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when QSFM periods or walking straight between two base nodes were detected. Figure 4 1 
shows a comparison between the positioning performance of the proposed PDR and the 2 
PDR-based gyro heading. The PDR-based gyro heading (the purple track, Figure 4) for 3 
loops one and two (i.e., short-term solution) showed similar performance to the proposed 4 
PDR (the red track, Figure 4). However, the purple track was rotated around 100° after 5 
walking 750 m. This was due to the accumulated heading drift with the long-term locali- 6 
zation. In contrast, the red track achieved accurate positioning solution over time with a 7 
mean and a 90% error of 1.45 and 2.35 m, respectively. 8 

4. Conclusion  9 
In this paper, we proposed a PDR scheme to curb the PDR drift under the uncon- 10 

strained smartphone conditions. A robust step detection was developed based on time- 11 
domain peak and valley acceleration extremes. The differences between the successive 12 
extremes were used to boost the detection decision of the device pose. The proposed PDR 13 
scheme was devised to select the step length and direction approach based on the current 14 
devise pose. The QSMF data were applied to calibrate the gyro heading. Moreover, the 15 
step length and heading were also compensated when a straight walking pattern was ob- 16 
served between two base nodes. We achieved reliable step detection results under differ- 17 
ent smartphone poses. The pose recognition was enhanced and help improve the step 18 
heading and length estimation. Furthermore, the estimated heading after 20 minutes of 19 
walking drifted less than 5°. The overall performance of PDR was significantly improved 20 
in long-term scenarios with a mean and a 90% error of 1.45 and 2.35 m, respectively. 21 
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