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Abstract: The ability to record brain signals during daily life activities would allow to deepen our 12 

understanding of the human brain, its related pathologies (such as epilepsy and Alzheimer’s 13 

disease) or develop practical and discreet brain-computer interfaces. In this paper, we present a new 14 

miniature wearable electroencephalography (EEG) sensor, of which multiple copies can be 15 

deployed on the scalp in a wireless mesh configuration to record brain activity. Each node in this 16 

wireless EEG sensor network (WESN) performs a local EEG acquisition which is transmitted via 17 

Bluetooth low energy to a smartphone. To keep coherent signals over time and avoid drifting, the 18 

nodes exchange synchronization pulses within the WESN via human body communication. 19 
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1. Introduction 22 

With the advent of wearable electronics, the ability to record physiological signals on 23 

the human body has grown. This is particularly the case for the human brain [1] where 24 

wearable technology could improve our understanding of brain pathologies (epilepsy, 25 

Alzheimer's diseases, etc.), or facilitate the use of brain-computer interfaces in daily life 26 

(e.g. for driver vigilance [2], neuro-steered hearing aids [3], etc.). Surface 27 

electroencephalography (EEG), where electrodes are placed on the scalp, has shown to be 28 

the most promising non-invasive solution for continuous monitoring of the brain 24/7 29 

during daily life [4]. Multiple teams have already contributed to the development of 30 

wearable EEG systems such as [2,5–10]. While traditional EEG headsets are too bulky for 31 

use in real life, miniature EEG sensors come with their own disadvantage: they only cover 32 

a small region of the scalp (typically in or around the ears and on the forehead)[7–10]. In 33 

order to increase scalp coverage, while preserving wearability constraints, it was 34 

proposed in [4] to deploy multiple wireless miniature EEG sensors, this was dubbed a 35 

‘wireless EEG sensor network (WESN)’ [4]. A first hardware prototype of this WESN 36 

concept has been proposed in [11]. In this paper, we focus on developing a wireless sensor 37 

that can be used as one node of an EEG sensor network. The sensor is designed to be as 38 

small as possible (24 mm x 7 mm x 3.6 mm) in order to be light and discrete enough to 39 

reduce its social impact and to stay as comfortable as possible. Furthermore, in order to 40 

synchronize the different nodes, we propose the use of synchronization pulses through 41 

human-body communication. 42 
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2. Materials and Methods 1 

The complete system consists of a group of wireless nodes connected to the scalp. 2 

Each node is composed of an EEG sensor, a wireless communication system, a central 3 

controlling unit, and a battery. 4 

2.1. Surface EEG Sensor 5 

The EEG circuit is intended to acquire and preprocess the brain activity measured on 6 

the scalp before being digitized via the 10-bit ADC of the central controlling unit. It is 7 

connected to three electrodes and is composed of three subparts that are described in this 8 

subsection. 9 

The first step is to amplify the signal. This is done with an instrumentation amplifier 10 

configured with a gain of 26. A passive first-order high pass filter with a cut-off frequency 11 

of 0.3 Hz is then added to remove any DC component that would induce saturation during 12 

the next stage. Finally, a first-order low pass filter with a gain of 48 and a cut-off frequency 13 

of 250 Hz is used. Figure 1 shows a summary of the EEG sensor with a block diagram. 14 

 15 

Figure 1. Block diagram of the EEG sensor. 16 

2.2. Central Unit 17 

The central controlling unit is implemented with the DA1453 chip[14] from Dialog 18 

Semiconductor. It contains, among others, a microcontroller and the complete required 19 

hardware to be compatible with Bluetooth low energy (BLE) 5.1. The central unit samples 20 

the EEG signal with its 10-bit ADC every 2 ms (500 Hz), concatenates them over time and 21 

sends them via BLE to a smartphone every 100 ms.  22 

2.3 Synchronization 23 

One problem when dealing with multiple autonomous nodes in a mesh system such 24 

as a WESN is that they all have their independent clock system. Every clock is designed 25 

to work at a specific frequency but has a small tolerance (usually +/- 10 ppm). Moreover, 26 

the frequency can vary over time, which results in a time-varying drift between the clocks. 27 

To overcome this problem, it was decided to send a synchronization pulse to each sensor 28 

by using the body as an electrical conductor. This is also known as galvanic Human Body 29 

Communication (HBC) or Body Channel Communication (BCC). As explained by Jang et 30 

al.[15], this consists of applying a voltage between two points on the body and measuring 31 

the induced voltage between two other independent points on the body. While HBC is 32 

usually used to transmit data, we used it to send a synchronization rectangular pulse. One 33 

node in the mesh is designed to be the master, the one sending the synchronization pulse; 34 

the remaining ones are designed to be the slaves, receiving the pulse. 35 

To send the pulse, we used a general-purpose input/output (GPIO) pin of the 36 

microcontroller to send a rectangular pulse of 2 µs every 250 ms. For the reception side, 37 

two active high pass filters with gains of 47 V/V and 10 V/V and a cut-off frequency of 6 38 

kHz put in cascade are used to amplify the signal and maximally reduce the predominant 39 

50 Hz noise and the biosignal. A Schmidt trigger is then used to recreate the initial pulse 40 

signal which is transmitted to a GPIO of the receiver. Figure 2 shows the block diagram 41 

of the receiver circuit. 42 

 43 

Figure 2. Block diagram of the synchronization receiver (RX). 44 
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The peaks captured by the nodes are then concatenated with the digitized EEG data 1 

and sent to the Bluetooth stream. To transmit and receive the synchronization pulse, the 2 

circuit uses the same electrodes as the one for EEG acquisition. Indeed, the bandwidth of 3 

both signals (EEG and synchronization pulse) are so far from each other that the input 4 

filter of the EEG can easily get rid of the synchronization signal (and vice versa). 5 

2.4. Wireless communication 6 

To transmit data via Bluetooth Low Energy 5.1., a service containing a single 7 

characteristic has been created. The choice to concatenate the EEG data with the 8 

synchronization bit (triggered by the HBC pulse as explained in Section 2.3) was made to 9 

reduce transmission packet size. A typical packet transmission is shown in Figure 3. 10 

 11 

Figure 3. Each Bluetooth low energy packet transmitted contains 50 blocks concatenated. Each 12 
block of data contains synchronization information and the 10-bits EEG data.  13 

2.5. Sensor fabrication 14 

The three tests explained in the next section have been realized using a standard FR4 15 

prototype PCB (Figure 4a). The final sensor, currently being developed, is shown in Figure 16 

4b. To have the smallest possible sensor, flexible PCBs made of polyimide material of only 17 

50 µm in thickness are used, leading to a maximal thickness of 1 mm with components 18 

included. The sensor uses two hearing aid A10 (Zinc-air) batteries connected in series. 19 

Since these batteries are 3.6 mm thick, the flexible PCB will be folded on itself to reduce 20 

its surface while not exceeding the thickness of the batteries.  21 

    22 

    23 

Figure 4. Design of one sensor node without electrodes: (a) current prototype PCB (b) CAD of the 24 
final sensor with folded PCB measuring 24 mm x 7 mm (with 3.6 mm thickness). 25 

3. Results 26 

3.1. EEG acquisition 27 

The EEG acquisition was tested on its own and compared to a commercial mobile 28 

EEG device (SMARTING mobi from mbraintrain[12]), referred to as the reference system, 29 

in three different tests. During each test, silver chloride (AgCl) plastic cup electrodes were 30 

placed on the scalp of a test subject (29-year-old male) and connected to the sensor 31 

developed in this work as well as to the reference system using an electrode splitter. 32 

 33 

Figure 5. Test setup of the EEG acquisition system validation. 34 

During the first test, the test subject is not asked to do anything special. Figure 6a 35 

shows the time signal acquired by this sensor and the reference system. Since both signals 36 

1 cm 

(a) (b) 
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have different gains, the two curves have been scaled and shifted vertically for better 1 

visibility. Figure 6b shows the computed cross-correlation of the two signals. 2 

 3 

Figure 6. (a) The time-domain EEG signals (b) Cross-correlation of the two complete signals. 4 

During the second test, the test subject is asked to keep his eyes open for one minute, 5 

then to close them for one minute. In this test, we expect to see alpha waves which are 6 

macroscopic neural oscillations in the range from 8 Hz to 12 Hz that appear when a test 7 

subject closes his eyes. Figure 7 shows the spectrum (discrete Fourier transform) of the 8 

EEG signals acquired by both devices: the first minutes of the test (eyes open, Figure 7a) 9 

and the second minute of the test (eyes closed, Figure 7b).  10 

 11 

Figure 7. Capture of alpha waves. Both signals have been post-processed to remove any frequency 12 
higher than 25 Hz. (a) Spectrum of the EEG signal when test subject kept eyes open. (b) Spectrum 13 
of the EEG signal when test subject kept eyes closed. 14 

During the third test, called “oddball”, the test subject is asked to listen to a stream 15 

of short sounds (“bip”) at 600 Hz played every second (called background). Randomly 16 

and seldomly, the standard tone is replaced by a higher pitch tone at 900 Hz (called 17 

target). The test subject must then count the number of higher tones heard during the total 18 

test (12 minutes). These random target tones elicit a so-called event-related potential 19 

(ERP), which typically appears 300 ms after the stimulus (the so-called ‘P300’ response). 20 

To process the data, every 1 s window following a bip is sorted based on its tone. Higher 21 

and lower tone event windows are averaged separately and compared. It is expected to 22 

see a variation in the brain activity when a higher tone is heard due to the ERP. Figure 8 23 

shows the results. 24 

 25 

Figure 8. Responses to the target tone versus standard (background) tone in the oddball test.  26 
(a) Result from the reference system. (b) Result from the sensor system developed in this work. 27 
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3.2. Synchronization 1 

This part of the project has not been tested in a full configuration while recording 2 

EEG. It has been tested on its own as early validation. Two nodes were connected to the 3 

body (arm) via two electrodes as shown in Figure 9. The first node was the emitter (TX), 4 

sending a 2 µs rectangular pulse using a GPIO pin, and the second node was the receiver 5 

(RX), receiving the pulse reconstructed after amplification and filtering, via one GPIO pin. 6 

 7 

Figure 9. Test setup of the HBC validation test. Note that the green ground and orange ground are 8 
not connected. Test points TP1 and TP2 are used to visualize steps on the reception side (see 9 
Figure 10). 10 

Figure 10c shows the output of the signal where the internal state of the microcontroller 11 

changes after each synchronization pulse being received. Figure 10a shows the signal 12 

measured before amplification and filtering and Figure 10b shows the signal sent to the 13 

microcontroller (after the two amplification stages and the Schmitt trigger). 14 

 15 

    16 

Figure 10. the signal received and processed by the synchronization receiver. (a) The measured signal on the electrodes before any 17 
amplification (on TP1). (b) Processed signal (after the two stages amplification and the Schmitt trigger, measured on TP2). (c) The 18 
internal state of the microcontroller which toggles every time a synchronization pulse is received. 19 

4. Discussion 20 

4.1. EEG acquisition 21 

During the first test, we could validate the ability of the sensor system to provide 22 

similar output as a commercial device. Figure 6a shows that the time-domain signals look 23 

similar. This first observation was then confirmed by the cross-correlation of the two 24 

signals, which has a clear dominant peak around 0 lags in Figure 6b. 25 

The second test was also successfully passed. Alpha waves were expected between 8 26 

and 12 Hz when the test subject had his eyes closed. In Figure 7b, a clear peak rose around 27 

10 Hz as expected when the subject closed his eyes while none were visible when his eyes 28 

were open. Moreover, similar phenomena were observed in the reference system. 29 

Results from the third test are more complex to analyze. Standard oddball curves 30 

might strongly vary depending on the test subject, electrodes positions, synchronization 31 

between EEG and audio, ... We can however validate a few points in Figure 8 showing 32 

that the test was successfully passed. First, the typical peak around 100 ms, showing a 33 

brain reaction when the subject heard a sound, is present. Furthermore, we observe a clear 34 

difference between the background and target curve, because of the ERP. 35 

4.2. Synchronization 36 

The use of HBC as synchronization has shown promising results. While the signal 37 

measured at the skin level is highly corrupted by 50Hz noise, proper filtering allows 38 

recovering the initial synchronization pulses. A further study will be required to estimate 39 

the number of pulses missed (or artificial detections) on the receiver side compared to the 40 

emitter side. 41 

 42 
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