Synthesis of kinase inhibitors utilizing thiophile-free *Eschenmoser* reaction of bromoindol-2-ones and thioamides

Lukáš Marek, Jiří Váňa, Jan Svoboda, Jiří Hanusek

Institute of Organic Chemistry and Technology, University of Pardubice, Studentská 573, 532 10 Pardubice The Czech Republic e-mail: Lukas.marek3@student.upce.cz

INTRODUCTION

3-[Arylamino(phenyl)methylidene]oxindoles are of significant interest in medicinal chemistry, as they acts as potent tyrosine or Aurora A/B kinase inhibitors. Recently, we discovered that Eschenmoser reaction of 3-bromooxindoles and thioamides can serve as powerful tool in preparation of substitued 3-(aminomethylidene)oxindoles.
 In this work, we demonstrate versatility of Eschenmoser reaction in the synthesis of several known kinase inhibitors – Nintedanib, Hesperadin and their analogues.

Synthesis of starting 3-bromooxindoles

Three step synthesis starting from isatins vs. novel method utilizing oxindole as starting material and CuBr₂ as mild bromination reagent
 Direct bromination is compatible with hydrolysable groups (e.g. COOMe)

ESCHENMOSER REACTION - **3-BROMOOXINDOLES AND THIOAMIDES**

- An extensive study conducted with 3-bromooxindoles and prim./ sec./tert. thioamides; no base/thiophile needed for prim. and sec. thioamides, for tert. thioamides – thiophile necessitate!
- Reaction proceeded smoothly in polar DMF at 25 °C
- Thiobenzanilide derivatives shown promising results

 $R_1 = H, 5$ -Cl, 5-Me, 5-NO₂, 6-Cl, 6-COOMe $R_2 = Ph, Me$ $R_3 = H, Me, Et, Ph, 4$ -BrPh, 4-ClPh, 4-CF₃Ph, 4-MeOPh, 4-MePh, Me, *n*-pentyl, chex $R_4 = H, Me, Et$ R^{1} O

-COOMe H h, 4-CF₃Ph, entyl, chex TKI pharmacophores! Yields: 43 – 88 %

SYNTHESIS OF KEY THIOAMIDES

"Hesperadin thioamide" – thionation

Py₂P₂S₅ – excellent chemoselectivity R = H, 5-Cl, 5-Me, 5-NO₂, 6-Cl

R = H, 5-NO₂, 6-COOMe

CONVERSION OF THIOAMIDES INTO SUITABLE SALTS

- Both starting thioamides contains basic centers - decomposition of
 - 3-bromooxindoles to isoindigo derivatives
- Conversion of thioamides into suitable salts
- Hesperadin thioamide·HCI/Nintedanib thioamide·2TfAc were prepared

SYNTHESIS OF *NINTEDANIB* **- SOLVENT SCOPE & SCALE-UP**

Solvent	Conversion [%]	Amide [%]	Product [%]
Acetone	91	2	89
ACN	100	3	97
DMSO	96	75	21
DMF	84	0	84
THF	73	1	72
			C A

Best conversion achieved at 60 °C in ACN as reaction solvent
 81 % yield in 3.3 mmol scale

72 % over 2 steps

В

		_		00	TOO	100	> 3 3 7 0 0
3	PhC(=S)SMe	1	DMSO	60	100	50	35/-
4	PhC(=S)SBt	1.5	DCM/DMF	12	60	100	>95/85
5	Bn_2S_2	0.5 (0.1 l ₂)	DMSO	24	100	>95	decomp.
6	(PhCS)S ^c	1	THF	0.25	- 10	15	15/—
7	(PhCS)S ₂	1	CHCl ₃	1	25	40	20/-

a) Assay of desired thioamide in reaction mixture b) Isolated yield (flash LC) c) Prepared *"in situ"* Conditions: 0.1 mmol of starting aniline in 1 ml of solvent (c = 1M) in closed HeadSpace vial. Conversions determined by ¹H NMR after evaporation of reaction solvent.

REFERENCES

Roth G.J.; Binder, R.; Colbatzky, F.; Dallinger, C. et al. J. Med. Chem. 2015, 58(3), 1053 – 63.
 Roskoski, R., Jr. Properties of FDA-approved small molecule protein kinase inhibitors: a 2020 update. J. Pharm. Res. 2020, 152.

[3] Roth, G. J.; Heckel, A.; Colbatzky, F.; Handschuh, S. et al. *J. Med. Chem.* 2009, 52, 4466 – 4480.
[4] Marek L.; Kolman L.; Váňa J.; Svoboda J.; Hanusek J. *Beilstein J. Org. Chem.* 2021, 17, 527 – 539.
[5] Marek L.; Váňa J.; Svoboda J.; Hanusek J. *J. Org. Chem.* 2021, 86(15), 10621 – 29.
[6] Patent WO 016530 A1 2017.

[7] Patent WO 068441 A2 2012.

2. EtSO₂Cl

 C_5H_5N/DCM

CONCLUSIONS

- Initial study confirmed usefulness of *Eschenmoser* reaction for preparation of oxindole-based TKI pharmacophores
- Thionation of corresponding amide afforded thioamide for synthesis of *Hesperadin*
- Thiobenzoylation of commercially available aniline with *S*-methyldithiobenzoate gave *"Nintedanib* thioamide" in high yield
 Novel synthetic method for synthesis of **3-bromooxindole by direct bromination** of oxindole developed
- Nintedanib prepared in 81 % yield by Eschenmoser reaction
- *Hesperadin* analogues were formed by reaction of substituted 3-bromooxindoles with *"Hesperadin* thioamide" in DMF at 80 °C
 Hesperadin synthetized from corresponding 5-NO₂ derivative