Effects of nano selenium-enriched *Bacillus subtilis* supplementation on growth performance, nutrients digestibility and blood constituents of growing rabbits

SeNPs-enriched Bacillus

Salma H. Abu Hafsa*, Marwa Eltarahony**, Ayman A. Hassan***

*Livestock Research Department, Arid Lands Cultivation Research and Technological Applications, New Borg El-Arab, Alexandria 21934, Egypt. **Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria 21934, Egypt.

***Animal Production Research Institute, Agricultural Research Center, Giza 12619, Egypt.

Objectives

• Purpose of this study was to evaluate the efficiency of supplemental Bacillus in the forms of *Bacillus subtilis* alone (BS) and selenium nanoparticles-enriched *Bacillus subtilis* (SeNPsBS) as probiotic feed additives on rabbits growth performance, nutrient digestibility, nitrogen balance and blood biochemical parameters.

Background		Results	
Dachgrund		Average daily gain	Feed intake
Dethe selening (Se) and methicatic Desilling over the winter of nexulating	30	a a 120	

25

20

15

10

4.5

3.5

2.5

1.5

0.5

Control

Bacillus subtilis

• Both selenium (Se) and probiotic Bacillus own the virtues of regulating animal metabolism and improve the growth performance in growing rabbits.

Material and Methods

Probiotic Bacteria and feed preparation:

oBacillus subtilis (BS) was isolated from an environmental ecosystem in Egypt, characterized, and optimized to represent in *vitro/vivo* probiotic properties in order to determine the safety and efficacy as an animal feed additive. Fermentation of nano selenium-enriched Bacillus subtilis was prepared with sodium selenite supplemented into the BS culture medium. After fermentation, live BS without Se was 1×10^9 cfu/ml, while SeNPsBS was 1×10^9 cfu/ml, and SeNPs reached 0.35 ppm. Each 1 g of BS and SeNPsBS were mixed with 1 kg of a carrier before being added to 1000 kg of animal feed.

•Animals:

A total of 105 male New Zealand White growing rabbits aged 6 weeks, weighing 762 ± 13.8 g, were randomly distributed into five groups of 21 rabbits (7 replicates

of 3 rabbits each) in a completely randomized experimental design.

Figure (4). Effect of probiotic *Bacillus subtilis* supplementation on growth performance of rabbits.

		Experimental groups					
Items	Cantual	Bacillus subtilis		SeNPs-enriched Bacillus		SEM	P-value
	Control	(T1)	(T2)	(T3)	(T4)		I -value
Apparent digestibility (%)							
Dry matter	64.76 ^b	66.49 ^a	66.72 ^a	67.18 ^a	67.26 ^a	0.83	0.001
Crude protein	66.39 ^b	69.03 ^a	68.83 ^a	69.22 ^a	69.14 ^a	0.41	0.017
Neutral detergent fibre	34.85 ^b	39.49 a	39.88 a	40.83 ^a	40.33 a	1.47	0.004
Acid detergent fibre	28.39 ^b	33.16 ^a	33.05 ^a	34.18 ^a	34.51 ^a	1.39	0.001
Nitrogen balance (g/day)							
N intake	3.07	2.99	2.96	2.97	2.92	0.19	0.845
Faces nitrogen	0.76 ^a	0.56 ^b	0.54 ^b	0.47 ^b	0.48 ^b	0.08	0.037
Urine nitrogen	0.84	0.78	0.77	0.79	0.75	0.03	0.722
N absorbed	2.31 ^b	2.43 ^a	2.42 ^a	2.50 ^a	2.44 ^a	0.08	0.041
N retained	1.47 ^b	1.65 ^a	1.65 ^a	1.71 ^a	1.69 ^a	0.06	0.006

Treatments:

• Control (with no probiotic).

• Groups T1 and T2 were supplemented with probiotics Bacillus subtilis at doses 0.5×10^9 CFU/kg diet and 1×10^9 CFU/kg diet, respectively.

o Groups T3 and T4 were supplemented with probiotics SeNPs-enriched *Bacillus subtilis* at doses 0.5×10^9 CFU/kg diet and 1×10^9 CFU/kg diet, respectively.

Figure 1: BS

Figure 2: SeNPsB

Figure 3: After being pelleted with animal feed

Growth performance measurements:

•Body weight was calculated as the difference between the final and initial rabbit weight.

• Feed intake was recorded daily during the experiment.

• Average daily gain and feed conversion ratio were calculated.

• Mortality rate was recorded daily and the percentage was recorded for each group at the end of the experiment.

<u> </u>	 	

Table (2). Effect of probiotic Bacillus subtilis supplementation on carcass characteristics of rabbits.

SeNPs-enriched Bacillus

	Experimental groups						
Items	Control	Bacillus subtilis		SeNPs-enriched Bacillus			
		(T1)	(T2)	(T3)	(T4)	SEM	P-value
Pre-slaughter weight, g	2258.46	2284.33	2271.06	2294.14	2280.11	42.84	0.873
Dressing, %	57.48 ^b	60.54 ^a	61.18 ^a	61.74 ^a	61.21 ^a	1.15	0.015
Cecum weight, %	5.25 ^b	5.51 ^a	5.55 ^a	5.49 ^a	5.58 ^a	0.08	0.001
Liver, %	3.05	3.11	3.18	3.14	3.16	0.11	0.897
Kidney, %	2.44	2.31	2.41	2.33	2.37	0.16	0.853
Heart, %	0.51	0.53	0.54	0.52	0.54	0.04	0.788
Spleen, %	0.11	0.12	0.12	0.11	0.12	0.01	0.852
a-b Means in the same row with di	fforont sunors	corinte ara cia	nificantly diffa	ont (D<0.05)			

eans in the same row with unterent superscripts are significantly unterent (P>0.05).

Table (3). Effect of probiotic Bacillus subtilis supplementation on serum biochemical Parameters of rabbits.								
Items		Bacillus	subtilis	SeNPs-enriched Bacillus		SEM	P-value	
	Control	(T1)	(T2)	(T3)	(T4)			
Total protein (g/dl)	6.43 ^b	6.89 ^a	6.97 ^a	6.94 ^a	7.06 ^a	0.15	0.004	
Albumin (g/dl)	3.16 ^b	3.53 ^a	3.59 ^a	3.61 ^a	3.69 ^a	0.06	0.001	
Globulin (g/dl)	3.27 ^b	3.36 ^a	3.38 ^a	3.33 ^a	3.37 ^a	0.04	0.032	
Albumin globulin ratio	0.97 ^b	1.05 a	1.06 ^a	1.08 a	1.09 a	0.03	0.018	
Cholesterol (mg/dl)	103.85 ^a	75.33 ^b	72.73 ^b	69.38 ^b	67.55 ^b	11.94	0.013	
Triglycerides (mg/dl)	75.57 ^a	63.51 ^b	60.28 ^b	57.94 ^b	55.66 ^b	8.16	0.021	
HDL (mg/dl)	49.64 ^a	42.55 ^b	41.39 ^b	41.21 ^b	39.13 ^b	2.06	0.016	
LDL (mg/dl)	39.10 ^a	20.08 ^b	19.28 ^b	16.58 ^b	17.29 ^b	4.14	0.024	
VLDL (mg/dl)	15.11 ^a	12.70 ^b	12.06 ^b	11.59 ^b	11.13 ^b	1.66	0.029	
^{a-b} Means in the same row with different superscripts are significantly different (P<0.05).								

Sampling:

- At the end of the experiment, rabbits were kept in metabolic cages to measure nutrient digestibility and nitrogen balance.
- o Blood sample were collected for serum biochemistry at the end of the experiment. Serum biochemistry were determined according to the manufacturers' instructions using commercial assay kits (Bio-diagnostic, Cairo, Egypt).
- Data were analysed by analysis of variance using the GLM procedures of / SAS.

Conclusion

Bacillus probiotics in the forms of *Bacillus subtilis* alone, as well as SeNPs-enriched *Bacillus subtilis*, are alternatives natural additives that promote growth performance, nutrient digestibility, nitrogen balance, and lower blood lipids in rabbits. Probiotics, in both forms, are a promising natural feed supplements with favorable productive and physiological effects.

*Contaact Person: Dr. Salma H. Abu Hafsa hashim_salma@yahoo.com **Email Address:** (+2) 010000313649Mobile: