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Abstract: Conversion efficiencies and stability of the perovskite solar cells were improved by 12 
adding a small amount of ethylammonium (EA) and rubidium (Rb) to the CH3NH3PbI3 compounds. 13 
Addition of ethylamine hydrobromide and rubidium iodide provided an increase in carrier 14 
concentration and promotion of crystal growth, resulting in an improvement in conversion 15 
efficiencies and stability. First-principles calculations showed that the addition of Rb lowered the 16 
total energy and made the crystal stable. The band calculation also shows that the EA addition 17 
reduce the effective mass and improves the carrier mobility. 18 
 19 
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 22 

1. Introduction 23 
In order to solve the problems of global warming and energy resources, the use of 24 

renewable energy sources is being promoted. One of them is a solar cell that uses light 25 
energy from the sun. One of the solar cells is called perovskite solar cells [1,2], which use 26 
materials with a crystalline structure called perovskite for the photoactive layer and have 27 
high conversion efficiencies comparable to silicon solar cells currently in circulation [3]. 28 
The perovskite solar cells have the advantage of lower cost than silicon solar cells because 29 
they can be produced using coating technology [4,5]. In addition, flexible and light-weight 30 
solar cells can be realized, making it possible to install them in places where silicon solar 31 
cells are difficult to install [6-9]. 32 

Perovskite solar cells are widely studied, and the partial substitution method with dif- 33 
ferent elements and molecules is often used to improve the properties of perovskite solar 34 
cells [10-12].Organic−inorganic metal halide perovskites have a cubic structure with a 35 
general formula ABX3, where A is an organic cation, B is a divalent metal ion, and X is a 36 
halide ion [13-17]. Doping with elements such as cesium, rubidium (Rb) [15,18,19], potas- 37 
sium [20,21], sodium [22], formamidinium (CH(NH2)2, FA) [23], ethylammonium 38 
(CH3CH2NH3, EA) [24-26], or guanidinium (C(NH2)3, GA) [27-29] at the methylammo- 39 
nium (CH3NH3, MA) sites improved the conversion efficiencies. Studies on doping with 40 
halogen atoms, such as chlorine (Cl) or bromine (Br), at the iodine (I) sites of the perov- 41 
skite crystals have also been reported [17,30]. Pb-free and large grain perovskite solar cells 42 
have also been investigated [31-35]. 43 

The purpose of this study is to investigate the photovoltaic properties of perovskite 44 
layers by adding EA and Rb. It is reported that the addition of EA improves the surface 45 
morphology of the perovskite layer, and the addition of Rb generates more carriers but 46 
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also causes defects in the perovskite layer [2,3]. The effect of these additives on the for- 1 
mation of perovskite compounds in solar cells was investigated using current density - 2 
voltage curves, external quantum efficiencies (EQE), X-ray diffraction (XRD) patterns, and 3 
scanning electron microscope (SEM) images and elemental mapping images. First-princi- 4 
ples calculations were also used for band calculations and comparison according to the 5 
density of states. 6 

2. Experimental 7 
A schematic illustration of the present perovskite photovoltaic cells is shown in Figure 8 

1. F-doped tin oxide (FTO) substrates were cleaned in an ultrasonic bath with acetone and 9 
methanol and dried under nitrogen gas. The 0.15 and 0.30 M TiO2 precursor soltions were 10 
prepared from titanium diisopropoxide bis (acetylacetonate) ( 0.055 and 0.11 mL) with 1- 11 
butanol (1 mL), and the 0.15 M TiO2 precursor solution was spin-coated on the FTO sub- 12 
strate at 3000 rpm for 30 s and heated at 125 °C for 5 min in air to form a TiOx layer [36]. 13 
The 0.30 M TiO2 precursor solution was spin-coated onto the TiOx layer at 3000 rpm for 30 14 
s, and heated at 125 °C for 5 min. This process of coating with a 0.30 M solution was then 15 
performed two times, and the FTO substrate was annealed at 550 °C for 30 min to form a 16 
compact TiO2 layer. For the mesoporous TiO2 layer, TiO2 paste was prepared with TiO2 17 
powder with poly in ultrapure water. The solution was mixed with acetylacetone (10 μL) 18 
and triton X-100 (5 μL) for 30 min, and then left for 12 h to suppress the bubbles in the 19 
solution. After that, the TiO2 paste was coated onto the substrate by spin-coating at 5000 20 
rpm for 30 s. The cells were then annealed at 120 °C for 5 min and at 550 °C for 30 min to 21 
form a mesoporous TiO2 layer. 22 

For the preparation of perovskite compounds, a solution of CH3NH3I (190.7 mg) and 23 
PbCl2 (111.2 mg) was prepared with a mole ratio of 3:1 and in N,N-dimethylformamide 24 
(500 μL) with additives of EABr and RbI . These perovskite solutions were spin-coated 25 
three times at 2000 rpm for 60 s [37]. During the third spin-coating, several drops of DPPS 26 
were added [38-41], which is effective for the formation of stable devices [42]. 27 

A hole-transport layer was prepared by spin-coating. A solution of spiro-OMeTAD (50 28 
mg) in chlorobenzene (0.5 mL) was mixed with a solution of lithium bis (tri-fluoromethyl- 29 
sulfonyl) imide (260 mg) in acetonitrile (0.5 mL) for 24 h. The former solution with 4- 30 
tertbutylpyridine (14.4 mL) was mixed with the Li-TFSI solution (8.8 mL) for 30 min at 70 31 
°C. Then, the spiro-OMeTAD solution was spin-coated on the perovskite layer at 4000 32 
rpm for 30 s. All procedures were performed in ambient air. Finally, gold (Au) electrodes 33 
were evaporated as top electrodes using a metal mask for the patterning. 34 

 35 

Figure 1. Layered structure of the present solar cells. 36 

3. Results and Discussion 37 
Figure 2 shows the electron density distribution of MA0.625EA0.25Rb0.125PbI2.25Br0.75, showing 38 

that the electron density is higher around Br compared with I. It can also be seen that the 39 
electrons are delocalized in MA and EA, and there are almost no electrons around Rb. 40 
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 1 

Figure 2. Electron density distribution of MA0.625EA0.25Rb0.125PbI2.25Br0.75. 2 

 3 

Figure 3. Band structures and DOS of (a) MAPbI3 (b) EAPbI3 (c) RbPbI3 and (d) MAPbBr3. 4 
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Figure 3 shows the results of band structure and DOS of four types of perovskites. Table 1 
1 also summarizes the results of the effective masses and band gaps of electrons and holes 2 
calculated from the band calculations, and the total energies calculated from the first-prin- 3 
ciples calculations [43-46]. All crystals showed a direct transition type. I p orbitals domi- 4 
nate in the valence band and Pb p orbitals in the conduction band, while Rb s orbitals are 5 
found at higher energies than Pb b orbitals. The Rb s orbitals were localized at higher 6 
energies than the Pb b orbitals, which may contribute to the photovoltaic properties in the 7 
short wavelength regions due to optical absorption. The C p orbitals were found to be 8 
located far from the band edge. Compared to the MAPbI3, the effective masses of electrons 9 
and holes in EAPbI3, RbPbI3, and MAPbBr3 were smaller. The effective masses of electrons 10 
and holes became smaller in EAPbI3, RbPbI3 and MAPbBr3 compared to the MAPbI3. The 11 
effective masses of electrons and holes are smaller in EAPbI3, RbPbI3, and MAPbBr3 than 12 
in MAPbI3, suggesting an increase in carrier mobility. In addition, the band gap of MAP- 13 
bBr3 was greatly improved. This suggests an increase in the open-circuit voltage. The total 14 
energies were found to be stable with the substitution of EA and Br. 15 

Table 1. Comparison of effective mass rations, energy gaps and total energies. 16 

 17 

 18 

 19 

 20 

 21 

Figure 4. (a) J-V curves and (b) external quantum efficiencies of the devices. 22 

Figure 4 and Table 2 shows the current density - voltage (J-V) curves and the external 23 
quantum efficiencies. The conversion efficiency was the highest for a standard device. The 24 
EQE is almost constant between 300 and 800 nm and shifts to shorter wavelengths with 25 
increasing EABr content around 800 nm. This is thought to have led to an increase in the 26 
open-circuit voltage by increasing the band gap.  27 

Figure 5 shows the results of conversion efficiencies after 60 days. The conversion ef- 28 
ficiencies of the standard device decreased from the initial value, probably due to the de- 29 
composition of perovskite by the desorption of MA, an organic substance, with time. 30 
However, in the doped systems, the conversion efficiencies were improved in all devices. 31 
Comparing each parameter, the improvement in JSC and VOC is remarkable. The reason for 32 
the improvement in conversion efficiency is thought to be the formation of crystals due to 33 
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ion diffusion inside the perovskite layer immediately after fabrication. The growth of 1 
these crystals by room temperature aging is thought to have improved the surface cover- 2 
age and the interface between the TiO2 layer and the perovskite layer, resulting in im- 3 
proved conversion efficiency. 4 

 5 
Table 2. Measured photovoltaic parameters of solar cells. 6 

Device 
JSC 

(mA cm−2) 
VOC 
(V) FF 

η 
(%) 

ηave 
(%) 

Rs 
(Ω cm2) 

Rsh 
(Ω cm2) 

Eg 
(eV) 

Standard 18.3 0.814 0.590 8.80 7.56 9.92 1427 1.55 
RbI 5% + EABr 10% 13.7 0.866 0.602 7.16 5.92 13.1 1838 1.57 
RbI 5% + EABr 20% 12.2 0.871 0.683 7.25 5.62 12.8 1698 1.60 
RbI 5% + EABr 30% 15.0 0.869 0.576 7.51 6.44 10.8 1079 1.61 

After 60 days - - - - - - - - 
Standard 17.3 0.880 0.576 8.77 8.53 6.08 907 1.56 

RbI 5% + EABr 10% 21.6 0.901 0.646 12.6 10.9 5.67 677 1.59 
RbI 5% + EABr 20% 19.4 0.944 0.626 11.5 11.3 9.12 1030 1.61 
RbI 5% + EABr 30% 17.7 0.933 0.622 10.3 9.89 7.99 1290 1.62 

 7 

 8 
Figure 5. Changes in conversion efficiencies after 60 days in ambient air without 9 
encapsulation. 10 

 11 
Figure 6. X-ray diffraction patterns of the devices. 12 
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 1 
Figure 7. SEM images and elemental mapping images of the devices. 2 

Figure 6 shows the results of the X-ray diffraction patterns, showing that the intensity 3 
of the perovskite peak is enhanced in the Rb and EA doped system. This suggests that the 4 
orientation of the perovskite crystals has been improved. 5 

Figure 7 shows the results of SEM images and elemental mapping images of the 6 
perovskite layer; Surface of the standard device is smooth and. In the EA or Rb added 7 
system, the surface morphology is more dense, and the perovskite crystals are formed. 8 
The elemental mapping also shows that Rb, I and Br are distributed in the perovskite 9 
crystals. 10 

4. Conclusions 11 
The effects of EA and Rb addition on the photovoltaic properties were investigated 12 

using first-principles calculations and experimental devices. The first-principles calcula- 13 
tions showed that the effective masses of electrons and holes are reduced by the addition 14 
of EA and Rb. It was also found that the band gap increases with the addition of bromine. 15 
When the amount of EABr was increased, the band gap was widened, which is consistent 16 
with the results of first-principles calculations. The open-circuit voltage was also im- 17 
proved accordingly. After two months, the conversion efficiency of the Rb and EA added 18 
devices was improved. The stability of the perovskite crystal was improved by the migra- 19 
tion of Rb and EA to the position of the desorbed MA over time. The photovoltaic prop- 20 
erties of the devices with simultaneous addition of EABr and RbI showed superior per- 21 
formance in terms of long-term stability compared to MAPbI3 device. 22 
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