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Abstract: Bacterial methyl-accepting chemotaxis proteins (MCP) are the
membrane bound receptors responsible for regulating bacterial swimming
behavior. Although their structural architecture has been studied in many
bacterial species, detailed structural information has not been elucidated yet,
especially, in the membrane lipid bilayer. In this study, Tsr, a serine
chemoreceptor, has been used for the structural study of MCP in the lipid
bilayer. The recombinant Tsr was overexpressed in E. coli and purified
followed by the reconstitution into nanodiscs for providing the lipid bilayer
environment. Structural characteristics of Tsr in nanodiscs were first
investigated by the transmission electron microscopy (TEM) with negative
staining followed by cryo-EM. Microscopic images revealed that one to
three Tsr dimers were reconstituted in one nanodisc. However, cytoplasmic
tails below HAMP domain showed high flexibility in the micrograph, which
resulted in disappearance of the most of tail part during 2D classification.
These results suggest that Tsr form a strong dimer with flexible
conformation in the cytoplasmic signaling domain. However, trimer of
dimer is not stable in the nanodisc although previous studies suggested that
dimer forms trimer via interaction among cytoplasmic domains. Further
cryo-EM studies of Tsr in complex with other signaling mediators will
elucidate the detailed protein interactions and their signaling mechanism.
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Introduction

1. Chemotaxis
<Chemotaxis system in E.coli>



<Schematic model of Tsr homodimer> <Schematic model of core signaling unit (Trimer of dimer) in E.coli>

Introduction

2. Structures of Chemoreceptors
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Elife 4, e08419 (2015)
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<Previously solved structures of chemoreceptors>

Introduction

2. Structures of Chemoreceptors (continued)

https://iiif.elifesciences.org/lax/08419%2Felife-08419-fig3-v2.tif/full/full/0/default.jpg
https://www.nature.com/articles/23512/figures/4


Introduction

<Nanodisc reconstitution>

3. Nanodisc

Mix the purified membrane 
protein, membrane scaffold 
protein (MSP), and lipid at 
specific ratio.

The membrane protein is 
spontaneously reconstituted 
into lipid surrounded by MSP 
according to absorption of 
detergents with biobead since 
MSP is derived from an 
apolipoprotein.

Empty nanodisc can be 
separated by affinity 
chromatography or size 
exclusion chromatography.

The structural properties of 
receptors in native-lipid 
bilayer have been studied by 
nanodisc method.



<Tar per disc as increasing ratio of MSP/receptor>

Previous studies showed that
the number of chemoreceptors per disc
depends on MSP/receptor ratio.

CheA kinase activity is
much higher by Tar nanodisc containing three Tar dimers/disc
than Tar dimer/disc.
However, structural characteristics of three chemoreceptors 
dimers/disc are still unclear

Proceedings of the National Academy of Sciences
103, 11509-11514 (2006)

Introduction

<CheA kinase activity assays by 
Nanodisc-embedded chemoreceptor Tar>

4. Characteristics of nanodisc-embedded chemoreceptor 



Reagent or Resource Source Identifier

E.coli BL21 (DE3) Agilent Cat# 200131

n-Dodecyl-β-D-Maltopyranoside (DDM) Anatrace Cat# D310 5 GM

n-Octyl- β-Glucopyranoside (OG) Anatrace Cat# O311S

Sodium cholate hydrate Sigma Aldrich Cat# C6445-25G

Triton X-100 affymetrix Cat# 22686

E.coli polar lipid extract, chloroform Avanti Cat# 100600C

Ni-NTA Superflow Cartridges QIAGEN Cat# 30760

Bio-Beads SM-2 Bio-Rad Cat# 1523920

Superose 6 Increase 10/300 GL GE Healthcare Cat# 29-0915-96

PD-10 Desalting Columns GE Healthcare Cat# 17-0851-01

Uranylacetat Merck Cat# 8473

cOmpleteTM, EDTA-free Protease inhibitor Cocktail Sigma Aldrich Cat# 11873580001

R1.2/1.3 Holey Carbon Grids, 200 Mesh Copper Quantifoil 4220C-XA

<Key resources table>

Materials and Method

1. Materials



DDM solubilization

Ni-NTA (his-tag)

E.coli lipid extract 
in chloroform

cryo-EM

Mix (TsrEQH:MSP1D1E3:lipid = 1:1:80 molar ratio)

Select TsrEQH nanodisc (TsrEQHND) 
fraction containing approximate six 

Tsr receptors per nanodisc

Dried and resuspension 
at buffer containing 

detergents

Ni-NTA (his-tag)

TEV cleavage

Ni-NTA (flow & wash through)

Tsr mutant of methylation sites 
E304Q, E493Q with His-tag (TsrEQH) MSP1D1E3 E.coli lipid extract

Size exclusion chromatography

Size exclusion chromatography

Detergent removal (biobeads)

Quality check with 
negative-stain TEM

<Sample preparation>

Materials and Method

2. Method
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The best yield of Tsr nanodisc (TsrEQHND) at 1:1:80 
(Tsr:MSP1D1E3:E.coli lipid extract)

The gradual peak shift as the ratio of MSP to Tsr
increases suggests that the major number of Tsr per 
nanodisc decreases

TsrEQHND

Empty 
nanodisc

TsrEQHND

Empty 
nanodisc

Tsr:MSP:Lipid

Tsr:MSP:Lipid

<Optimization of lipid/MSP1D1E3 ratio > <Optimization of MSP1D1E3/Tsr ratio >

Results and Discussion

1. Optimization of nanodisc reconstitution ratio



<TsrEQHND containing six Tsr per nanodisc at 1:1:80>

Tsr (60kDa)

MSP1D1E3 (30kDa)

<SDS-PAGE of TsrEQHND fractions>

TsrEQHND fractions contatining approximate six Tsr receptors
are selected by comparing to standard proteins with exact molecular weight  

Results and Discussion

1. Optimization of nanodisc reconstitution ratio (continued)



<Representative micrograph> <Magnified view of particles>

<Representative 2D class averages>

<Ab initio 3D model>

Cytoplasmic tails are pointed out by yellow arrow.

Results and Discussion

2. Negative-stain TEM of TsrEQHND

100 nm



<Representative micrograph> <Magnified view of particles>

<Representative 2D class avrages>

straight long tails twist tails

twist nanodisc bodytop or bottom view

Cytoplasmic tails are pointed out by yellow arrow

Results and Discussion

3. Cryo-EM images and data processing of TsrEQHND

50 nm



2030 movies

310167 particles auto-picked with the template 
that were created by manually picked particles

48047 particles in selected 2D classes

Ab-initio reconstruction

Homogeneous refinement

<Cryo-EM data processing>

Results and Discussion

3. Cryo-EM images and data processing of TsrEQHND



The alphafold (AF-P02942-F1) predicted structure 
of Tsr monomer were docked into cryo-EM map

The previous solved structure of cytoplasmic 
domain Tsr dimer (PDB:1QU7) were matched to 

the alphafold Tsr monomer

The another alphafold Tsr monomer were 
matched to the cytoplasmic domain Tsr dimer

Finally, the alphafold Tsr dimer fitted to cryo-EM 
map were created based on the cytoplasmic 

domain Tsr dimer

<Alphafold Tsr fit>

<Ligand binding domain Tsr dimer (PDB:3ATP) fit>

Glu 304

<Fitting workflow>

Results and Discussion

4. Fitting of Tsr dimer into cryo-EM map of TsrEQHND



• The peak shift and sharpening elution range of TsrEQHND as the MSP/Tsr ratio increases 

indicate that excessive MSPs relative to Tsr causes Tsr to be more divided into one nanodisc

and consequently reaches a lower limit of core unit.

• The alignment of particles during 2D classification and fitting the density map to atomic 

model suggest that the middle fractions of TsrEQHND reconstituted at 1:1:80 ratio contain 

three Tsr homodimer dominantly. However, trimer of dimers is not stable and each Tsr

homodimer in nanodisc is very flexible.

• The validation whether oligomeric form of membrane proteins on nanodisc is built by 

recovered interaction among each of core units or by the force that MSPs and lipid bind them 

together is necessary.

• Further cryo-EM studies of Tsr complex with other signaling molecules such as CheA and 

CheW will elucidate how interactions among cytoplasmic domains and signaling molecules 

play important roles in heterogeneous tails.

Conclusions
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