

The 3rd International Online Conference on Crystals 15-30 JANUARY 2022 | ONLINE

Chaired by **PROF. DR. HELMUT CÖLFEN**

🛃 crystals 🛛 MDPI

Crystal structure of quaternary selenides Tl₂CdSi(Ge)₃Se₈

Andrii Selezen¹, Ivan Olekseyuk², Galyna Myronchuk³, Lyubomyr Gulay⁴, Lyudmyla Piskach ^{5,*}

¹Volyn National University, Lutsk, Voli Ave. 13; <u>andrii.selezen@gmail.com</u> ²Volyn National University, Lutsk, Voli Ave. 13; <u>st-lutsk@ukr.net</u> ³Volyn National University, Lutsk, Voli Ave. 13; <u>g_muronchuk@ukr.net</u> ⁴Volyn National University, Lutsk, Voli Ave. 13; <u>gulay.lyubomyr@vnu.edu.ua</u> ⁵Volyn National University, Lutsk, Voli Ave. 13; <u>lyuda0760@ukr.net</u>

* Corresponding author: <u>lyuda0760@ukr.net</u>

Abstract: Quaternary compounds Tl₂CdSi₃Se₈ and Tl₂CdGe₃Se₈ were found at the Tl₂CdSi(Ge)Se₄-Si(Ge)Se₂ sections of the quasi-ternary systems Tl₂Se-CdSe-Si(Ge)Se₂ at 570 K by XRD and microstructure analysis methods. Similar quaternary chalcogenides $A_{I2}B_{II}D_{IV3}X_8$ were reported earlier with alkaline elements (A^I = Cs, Rb, K, Na; B^{II} = Mg, Mn, Zn, Cd, Hg; D^{IV} = Ge, Sn; X = S, Se, Te. Several types of crystal structures were observed in this family of compounds, orthorhombic (S.G. P2₁2₁2₁), monoclinic (S.G. $P2_1/c$ or $P2_1/n$), cubic Pa-3. Additionally, similar compositions Cu(Ag)₂CdSn₃S₈ were found in the $Cu(Ag)_2S-CdS-SnS_2$ systems. The $Cu_2CdSn_3S_8$ compound is a synthetic analogue of the natural mineral rhodostannite Cu₂FeSn₃S₈ and crystallizes in the tetragonal S.G. $I4_1/a$. The Ag₂CdSn₃S₈ crystal structure refines well in both tetragonal rhodostannite type (S.G. $I4_1/a$, $R_1=0.0750$) and cubic chalcospinel type (S.G. *Fd*–3*m*; *a*=1.07635(2) *nm*, R_I =0.0781). The Tl₂CdD^{IV}₃X₈ compounds (M^{IV} = Si, Ge; X = Se) are closer to the quaternary phases with alkaline metals with orthorhombic structure. Their structure was determined in the isotropic approximation using the Cs₂CdGe₃Se₈ structure as a model, S.G. $P2_12_12_1$ with the lattice parameters a=0.7485(1), b=1.2117(3), c=1.7134(3) nm, $R_{I}=0.0953$ ($Tl_{2}CdSi_{3}Se_{8}$) and a=0.7602(3), b=1.2071(2), c=1.7474(2) nm, $R_{I}=0.1204$ (Tl₂CdGe₃Se₈). Each layer $2/_{\infty}$ [CdD^{IV}₃Se₈]²⁻ consists of chains $1/_{\infty}$ [CdD^{IV}Se₆]⁶⁻ that are linked by alternating [CdSe₄] and [D^{IV}Se₄] tetrahedra by corner sharing along the direction a. Moreover, the adjacent chains are connected into a layer by $[D^{IV}_2Se_6]^{4-}$ dimers by corner sharing along the direction *c*.

Keywords: quaternary chalcogenides; SEM/EDX; crystal structure, phase equilibria.

3. Results and Discussion

3.1. Phase equilibria in the $Tl_2Se-CdSe-SiSe_2$ system

Isothermal section of the Tl₂Se–CdSe–SiSe₂ system at 570 K was investigated by X-ray diffraction and microstructure analysis (Figure 1). The section consists of 9 single-phase, 16 two-phase and 9 three-phase fields. The studied isothermal section is similar to that of the germanium-containing Tl₂Se–CdSe–GeSe₂ system [1] due to the presence of analogous compounds.

Each system features two quaternary compounds of the compositions 2-1-1-4 and 2-1-3-8. $Tl_2CdSi_3Se_8$ and $Tl_2CdGe_3Se_8$ form at the $Tl_2CdSi(Ge)Se_4$ -Si(Ge)Se_2 sections.

Figure 1. Isothermal section of the Tl₂Se–CdSe–SiSe₂ system at 570 K

[1] Selezen A.O., Olekseyuk I.D., Myronchuk G.L., Smitiukh O.V., Piskach L.V., Synthesis and structure of the new semiconductor compounds $Tl_2B^{II}D^{IV}X_4$ ($B^{II} - Cd$, Hg; $D^{IV} - Si$, Ge; X – Se, Te) and isothermal sections of the Tl_2Se –CdSe-Ge(Sn)Se₂ systems at 570 K. *J. Solid State Chem.* 2020, 289, 121422. doi: 10.1016/j.jssc.2020.121422

3.2. *Crystal structure of the Tl*₂*CdSi*(*Ge*)₃*Se*₈ *compounds*

According to XRD results (Figure 2), Tl₂CdSi(Ge)₃Se₈ crystallize in noncentrosymmetric space group $P2_12_12_1$ (No 19), structure type Cs₂HgGe₃Se₈, with the lattice parameters a=0.7485(1), b=1.2117(3), c=1.7134(3) nm (Tl₂CdSi₃Se₈) and a=0.7602(3), b=1.2071(2), c=1.7474(2)nm (Tl₂CdGe₃Se₈).

The $Tl_2CdSi_3Se_8$ crystals are yellow (Figure 3, *a*) and $Tl_2CdGe_3Se_8$ are red (Figure 3, *b*).

Figure 2. Кристалічна структура сполук Tl₂CdSi(Ge)₃Se₈

b)

3.3. EDS analysis

Microphotograph of the $Tl_2CdSi_3Se_8$ and $Tl_2CdGe_3Se_8$ crystals used for quantitative elemental analysis and EDS results are shown in Figures 3, 4. The composition averaged over six samples is $Tl_2Cd_{1.2}Si_{3.17}Se_{8.4}$ which indicates the uniformity of the sample over its surface and is close to $Tl_2CdSi_3Se_8$ and $Tl_{1.79}Cd_{1.00}Ge_{2.99}Se_{7.83}$ for $Tl_2CdGe_3Se_8$ [2].

Figure 4. Microphotograph (*a*), EDS results (*b*) and mapping of elements (*c*) for the Tl₂CdGe₃Se₈ sample [2]

c)

b) **Figure 3.** Microphotograph (*a*), EDS results (*b*) and mapping of elements (*c*) for the Tl₂CdSi₃Se₈ sample

[2] Selezen A.O., Kogut Yu.M., Piskach L.V., Gulay L.D., New Quaternary Chalcogenides $Tl_2M^{II}M^{IV}{}_3Se_8$ and $Tl_2M^{II}M^{IV}X_4$. Presented at the 2nd International Electronic Conference on Crystals, 10–20 November 2020; Available online: https://iocc_2020.sciforum.net/.

Conclusions

1. Isothermal section of the $Tl_2Se-CdSe-SiSe_2$ system at 570 K was investigated by X-ray diffraction and microstructure analysis.

2. Quaternary compounds $Tl_2CdSi_3Se_8$ and $Tl_2CdGe_3Se_8$ were found at the $Tl_2CdSi(Ge)Se_4$ –Si(Ge)Se_2 sections of the quasi-ternary systems Tl_2Se –CdSe–Si(Ge)Se_2 at 570 K by XRD and microstructure analysis methods.

3. The Tl₂CdD^{IV}₃X₈ compounds (M^{IV} = Si, Ge; X = Se) are closer to the quaternary phases with alkaline metals with orthorhombic structure. Their structure was determined in the isotropic approximation using the Cs₂CdGe₃Se₈ structure as a model, *S.G. P*2₁2₁2₁ with the lattice parameters *a*=0.7485(1), *b*=1.2117(3), *c*=1.7134(3) *nm*, R_I= 0.0953 (Tl₂CdSi₃Se₈) and *a*=0.7602(3), *b*=1.2071(2), *c*=1.7474(2) nm, *R_I*=0.1204 (Tl₂CdGe₃Se₈).

Acknowledgments

