

Universidade do Minho

Essential oils-loaded nanofibrous mats for an enhanced protection against SARS-CoV-2

J.M. Domingues^{#1}, M.O. Teixeira^{#1}, M.A. Teixeira¹, D. Freitas2, S.F. Silva¹, S.D. Tohidi³, R.D.V. Fernandes¹, J. Padrão¹, A. Zille¹, C. Silva², J.C. Antunes¹ and Helena P. Felgueiras^{*1}

¹Centre for Textile Science and Technology (2C2T), University of Minho

CENTRO DE CIÊNCIA E TECNOLOGIATÊXTIL

www.2c2t.uminho.pt

²Centre of Biological Engineering (CEB), University of Minho ³Digital Transformation Colab (DTx), University of Minho

> [#]Authors contributed equally to the manuscript *helena.felgueiras@2c2t.uminho.pt

Introduction

In December 2019, a novel strain of coronavirus, SARS-CoV-2, was identified. Infected patients revealed symptoms of fever, cough (dry), sore throat, and fatigue, which began manifesting after 5 days of incubation. Hoping to prevent transmission, many countries adopted a mandatory mask use in closed public spaces. However, most mask options display a passive action against COVID-19. To overcome such restrictions, this work proposes the incorporation of anti-viral essential oils (EOs) loaded onto a nanofibrous layer that can be adapted to both community and commercial masks.

EOs Drawbacks

- cytotoxic at increased concentrations, which prevents systemic delivery;
- present low resistance to degradation by external factors (e.g., temperature, light, moisture);
- highly volatile in their free, unloaded form.

Results and Discussion Nanofiber Loading

Strategy 1

Physical adsorption of the EOs at the surface of the electrospun PCL mats (label PCLaEOs)

Nanofiber Morphology

Materials and Methods

Syringe or Capillary Tube

Electrospinning

Spinning technique that allows the production of continuous, homogeneous nanofibers.

Collecting

Plate

Polymeric solution preparation Polycaprolactone (PCL)

Why PCL?

- Food and Drug Administration (FDA)-approved;
- Drug loading efficiency (i.e., EOs biomolecules);
- Excellent mechanical strength, non-toxic, hydrophobic, biodegradable, etc.

PCL at 14 wt.% in chloroform/dimethyl formamide (CHF/DMF at 9/1 v/v)

Electrospinning processing conditions

Potential: 23 kV Extruding Speed: 0.7 mL/h Distance to Collector: 26 cm Needle (inner diameter): 18 gauge

Essential Oils (EOs) Selection

20 EOs* with antimicrobial potential were examined for their minimum inhibitory concentrations (MICs) against the MS2 Escherichia host and for

Confirmation of EOs Loading

Antimicrobial Effect

their virucidal concentration (VC) against the MS2 virus, mimic of SARS-Cov-2, at initial concentration of 1x107 CFUs or PFUs/mL, respectively.

EOs	MICs against MS2 host (mg/mL)	VC against MS2 virus (mg/mL)
Lemongrass (LGO)	178.0	356.0
Niaouli (NO)	45.7	365.2
Eucalyptus (ELO)	>	586.0
Orchid	85.6	428.0
Tea Tree Oil	22.4	447.5
Clove	105.6	528.0

*DOI: 10.3390/biom10081129

Acknowledgments

This work is financed by FEDER funds through COMPETE and by national funds through FCT via the projects POCI-01-0145-FEDER-028074 and UID/CTM/00264/2021.

Contact Killing Examinations Microorganism: Bacteriophage MS2 (mimic of SARS-CoV-2) Initial Concentration (t = 0 h): 3.8×10^7 PFUs/mL Incubation Period: 4 h Temperature: room

MS2 reduction was observed after 4 h of interaction on all EOloaded mats. PCL blended with LGO was the most effective from the group in fighting the virus.

PCL on its own was also seen to retain virus within its structure, attesting to its functionality as a potential retaining layer for masks.

Conclusions: Data demonstrated the potential of these EOs-loaded PCL/CA nanofiber mats to work as COVID-19 active barriers for individual protection masks.

