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Abstract: Pharmaceutical industries widely use Escherichia coli cell strain to synthesize various 

target products. The main goal is to reach the highest possible product yield. However, throughout 

the cell growth stage, the formation of by-products is inevitable. Metabolic compounds such as ac-

etates cause inhibition, particularly in later bioprocess stages. Therefore, the acetate accumulation 

model is necessary for planning bioprocesses to maximize cell biomass growth. The decision tree 

method was in possession to replicate the approach. Specific biomass growth at induction, broth 

weight, oxygen uptake rate, and consumed substrate weight were the inputs of model training 

[1,2]. Broth and consumed substrate weight had additional aging-related information incorporated 

as separate inputs to introduce the cumulative regularization [3]. 
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1. Introduction 

Bioprocess data monitoring and control is one of bioengineers' problematic and 

time-consuming tasks. Bioprocesses have complex mathematical models, noisy, incon-

sistent data, and complicated control systems [4,5]. Offline measurements are 

time-delayed, require additional instruments, and are time-consuming. The develop-

ment of soft sensors allows for improving and optimizing the process by facilitating 

real-time data collection. Process optimization leads to the primary goal of all pharma-

ceutical industries – to reach the highest possible product yield. 

Metabolic compounds such as acetates interfere with target product synthesis by 

causing inhibition, particularly in later bioprocess stages. Furthermore, inhibition 

lengthens the lag phase leading to biomass production and growth rate loss [6]. 

By-product formation under aerobic conditions is mainly caused by the lack of dissolved 

oxygen and the imbalance between glucose uptake and its conversion to biomass [7]. To 

better understand these processes, real-time acetate estimation is necessary.  

By-product estimation uses soft sensors that consist of numerous mathematical 

models [8]. These models vary from mechanistic and data-driven empirical models to 

hybrid models. Among the mechanistic models, the extended Kalman filter is one of the 

most popular approaches [9]. The EKF results are firmly related to the accuracy of the 

mathematical model. Therefore, hybrid models with data-driven subparts correct these 

inaccuracies [10,11].  

This study gives an E. coli by-product estimation model based on gathered offline 

data with a black-box model. It discusses model inputs, their physical meanings, and the 

impact of incorporating age-related information. The novelty of this study is the propo-

sition that off-gas analysis also carries information about the forming of by-products. 
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2. Materials and Methods 

Data used for model training originates from fed-batch E.coli BL21(DE3) 

pET21‐IFN‐alfa‐5 experiments. It consisted of 24 cultivation processes, some of which 

were with limited feeding. The cultivation medium throughout the experiments con-

sisted of 46.55 g KH2PO4, 14 g (NH4)2HPO4, 5.6 g C6H8O7.H2O, 3 mL of concentrated 

antifoam, 35 g H14MgO11S, and 105 gD (+) glucose monohydrate. The pressure and 

temperature of the system remained constant. During the cultivation process, pure oxy-

gen flow from 0 to 7.5 L/min was used to increase the oxygen transfer rate in the biore-

actor. 

3. Development of a Black-Box Model for Acetate Estimation 

Decision trees serve for data classification and continuous data prediction [12]. De-

cision trees used in continuous data prediction are called regression trees. Later is used as 

a data-driven model in making this estimator. MATLAB software was the model devel-

opment and data processing tool. Training and validation datasets were generated by 

dividing the sampled data from the experiments. The training dataset consisted of sam-

ples taken from 18 cultivation experiments and a validation dataset of 6. 

3.1. Input Selection 

Previous studies showed that specific growth rate μ is one of the best descriptors for 

estimating bioprocess parameters [3]. This parameter and oxygen uptake rate (OUR) 

carry much information about the growth and life of the cell [1,2]. The latter is estimated 

using a soft-sensor with off-gas information. The specific growth rate is expressed using 

OUR or offline-sampled biomass concentration X : 

 

 

where  – oxygen consumption parameter for biomass growth and the parameter 

for maintenance. As an input, the specific growth rate is used only during the induction 

phase of the process ( ). The value (  is calculated during the induction moment 

using Eq. 2 formula shown above. After the induction, new biochemical reactions start, 

and the cells synthesize the target product [12]. During cultivations, substrate consump-

tion affects cell development, and its inconsistent feeding may lead to cell conversion to 

metabolisms [13]. Substrate consumption and broth weight give model information 

about biomass growth, and broth weight also gives information about the dilution effect 

of substrate feeding. Additionally, broth and consumed substrate weight with supple-

mentary aging-related information are separate inputs introducing the cumulative reg-

ularization [3]. The selected inputs were: 

Table 1. Model inputs. 

Time h 

The specific growth rate during induction  1/h 

Broth weight kg 

Consumed substrate weight g 

Oxygen uptake rate OUR g/(h*kg) 

Broth weight with age information kg/h 

Consumed substrate weight with age information g/h 

3.2. Model Errors 
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Model parameters fitting was based on minimizing the errors. Errors were based on 

measured and estimated acetates sums of squared residuals (RSS) and mean absolute 

error (MAE) results 

 

 

where  is acetate i-th observation, and the value ( ) is a black-box model acetate 

estimate. The values RSS and MAE are shown with two different sets of inputs in Table 2. 

The first set included time ( ), the OUR, broth and consumed substrate weights, and 

the second set contained additional broth and consumed substrate weights with cumu-

lative regularization. As shown in Table 2, these additional inputs improved the results. 

Table 2. Model errors with age-related info and without. 

Inputs MAE RSS 

Without age-related info 0.192 1.739 

With age-related info 0.155 1.264 

4. Results and Discussion 

Model results show that the regression tree model is applicable for estimating E. coli 

cell metabolic compounds in fed-batch cultivation. Figure 1 shows the difference be-

tween measured and estimated acetate values. By comparing results from inputs with 

age-related information (dark blue color) and inputs without age-related information 

(light blue color), it is clear that introducing cumulative regularization improved 

by-product estimation. These extra inputs resolved the errors in the first half of the bio-

process and smoothened the big spikes in the second half of the process. After bioreactor 

inoculation, sudden spikes in acetate estimation can be related to new biochemical pro-

cesses. This phenomenon requires further, more in-depth data analysis. 
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Figure 1. Measured and estimated acetates using a validation dataset. 

On the other hand, by comparing this model to the traditional EKF model's lowest 

MAE, the black box model estimation lowered MAE by approximately 5% [9]. Also, this 

study used only two samples of biomass concentration, whereas EKF based model used 

biomass observed once every 5s. Additionally, experiments used for this model valida-

tion and training contained data involving the induction. Such an event causes a dis-

turbance for bioprocess dynamics, making it more challenging to estimate acetates. 

In the future, the proposed model will serve as the feedback that has the potential to 

improve the quantity and quality of a synthesized product. Altering the main parameters 

responsible for metabolic pathways such as substrate feed or/and oxygen transfer rate 

enhances the growth and well-being of the cell. Bioprocess improvements lead to easier 

process control and managing, providing a better workspace for future optimizations. 

5. Conclusions 

This study proposed an acetate estimator using the regression tree method. The 

model training dataset consisted of 18 cultivation experiments, and a dataset of 6 culti-

vation experiments validated the chosen inputs and model parameters. The regression 

tree model had the best results by using samples integrated with aging-related infor-

mation, and it achieved satisfactory results estimating acetates reaching MAE of 0.155 

and RSS of 1.264. 
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