
Using antibiotics scaffolds will warrant novel radiotracers for effective positron emission tomography imaging of infections: triumph or pitfall ?

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMPUS

UNIVERSITEIT VAN PRETORIA

NIBESITHI YA PRETORI

Arno C. Gouws^{1, 2} | Hendrik G. Kruger¹ | Mike M. Sathekge^{2, 3} | Jan R. Zeevaart^{2, 4, 5} Thavendran Govender^{2, 6} | Tricia Naiker^{1, 2} | Thomas Ebenhan^{* 2, 5, 7}

- ¹ Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban
- ² Nuclear Medicine Research Infrastructure NPC, Pretoria 0001, South Africa
- ³ Department of Nuclear Medicine, Steve Biko Academic Hospital & University of Pretoria, Pretoria
- ⁴ Radiochemistry, The South African Nuclear Energy Corporation, Brits
- ⁵ DSI/ Preclinical Drug Development Platform, North-West University, Potchefstroom
- ⁶ Department of Chemistry, University of Zululand, KwaDlangezwa
- ⁷ Department of Nuclear Medicine, University of Pretoria, Pretoria (all South Africa

Background: The excellent features of non-invasive molecular imaging, its progressive technology (real-time, whole-body imaging and quantification), and global impact by a growing infrastructure for positron emission tomography (PET) scanners are encouraging prospects to investigate new concepts which could transform clinical care of complex infectious diseases. Researchers are aiming towards the extension beyond the routinely available radiopharmaceuticals looking for more effective tools that interact directly with causative pathogens. We were interested to investigate whether the actual use of antibiotics as PET-radiotracers can be successful or might be too much of a challenge.

Table 1: Overview of radiolabelled PET-antibiotics

Table 1. Overview of radiotabened r E1-antiolotics				
	Radiotracer	Application	Target	
AF	[¹¹ C]trimethoprim [¹⁸ F]FP-trimethoprim	Imaging of Infection	Dihydrofolate Reductase – blocks Folate synthesis	
Fluoroquinolones	[¹⁸ F]F-ciprofloxacin [¹⁸ F]FP-ciprofloxacin [⁶⁸ Ga]Ga(D-/N-OTA-SCN)-ciprofloxacin [⁶⁸ Ga]Ga-DOTA-ciprofloxacin	Imaging of Infection	Affecting Topoisomerase II DNA complex - hindering cellular RNA Translation / Transcription	
	[¹⁸ F]F-lomefloxacin [¹⁸ F]F-fleroxacin [¹⁸ F]F-trovafloxacin	Pharmacodynamics /Pharmacokinetics		
Antituberculosis agents	[¹¹ C]isoniazid	Pharmacodynamics /Pharmacokinetics	catalase-peroxidase causes radical molecule \rightarrow trapped in the cell \rightarrow NAD-adduct inhibits enoyl-	
	2-[¹⁸ F]F-isoniazid	Imaging of Infection	acyl carrier protein reductase – blocks type II fatty acid synthase	
	[¹¹ C]PT70 [¹¹ C]PT119	Pharmacodynamics /Pharmacokinetics	directly inhibitors of enoyl-acyl carrier protein reductase	
	[¹⁸ F]F-linezolid (oxazolidinone) [¹¹ C]erythromycin (macrolide) [¹¹ C]rifampin	Pharmacodynamics /Pharmacokinetics Imaging of Infection	Binds to RNA polymerase and inhibits DNA transcription	
	[⁷⁶ Br]Br-bedaquiline		Inhibits ATP Synthase	
	[¹¹ C]pyrazinamide 5-[¹⁸ F]F-pyrazinamide		Activation by pyrazinamidase / inhibits Co-enzyme A synthesis	

Conclusion

- antibiotic-derived PET-radiotracer development is <u>very scattered</u>,
- often incoherent study designs / biases,

Methods: Input → systematically review of PET-antibiotic-derived radiopharmaceutical development efforts aimed at infection imaging:

UNIVERSITY OF

ZULULAND

a) radiotracer development for infection imaging or

necsa

b) radio-antibiotic based PET imaging (for pharmacologic drug characterization).

Output \rightarrow critical, in-depth assessment \rightarrow identify challenges and pitfalls reflecting on antibiotics to benefit in better radiopharmaceutical development.

Table 2: Challenges and possible solutions for the development and testing of novel antibiotic-based radiopharmaceuticals for infection imaging

Challenge	Possible strategy /solution	Limitation
Antibiotic radiosynthesis ≠ antibiotic action	 – libraries & SAR (target binding efficacy) – computational tests (aim at preserving the pharmacophore) 	 radioisotope production & radiopharmaceutical key (low specific activity)
Risk of compromised tracer sensitivity	 select antibiotics that target highly active/expressed biological processes disregard antibiotics with MoA that are not well understood consider the mass effect of tracer formulation radiosynthesis optimisation (formulation, dosage, carrier content); following quality guidelines testing tracer sensitivity in non-human primate models or first-in human investigations prior to clinical trials. 	 biological target expression is underwhelming threshold B_{max}/K_d may decrease < 10 for antibiotics derivatives radiotracer: inadequate specific activity small animal models only acceptable for proof-of- principle investigation
Risk associated with accuracy of visualising infection	 disregard antibiotics with predisposed MOA drug resistant pathogens: use vectors that circumvent / take advantage of defense mechanism, i.e., target over-expression or genetic redundancy 	 presence of additional (cold) ligand or conflicting pathogen environment cumbersome pro-drug activation processes pre-treated subjects using widely prescribed antibiotics
Effects of empiric use of antibiotics	 opting for radiosynthesis of antibiotics with unique MOA is crucial 	 radiotracer: inadequate specific activity
Unwanted (altered) tracer bioavailability & biodistribution	 ADME: prioritise antibiotics with rapid clearance from high-risk organ / compartments for infection assess candidates for host enzymatic and 	 relatively long-biological half-life of antibiotics antibiotics sometimes associate with host

- <u>reduced validity and reliability</u> although promising results occur,
- extensive studies <u>carbon-11/ fluoride-18-</u> <u>labelled trimethoprim</u> has sparked new belief that antibiotics can become clinically relevant <u>infection imaging agents.</u>

- assess candidates for host enzymatic and tissue specific interactions
 - practice SAR-guided incorporation of a radiolabelled functional group
- -consideration of liposome-, nanoparticle, or microsphere-based delivery system (transfer intact tracer to target)
- permit radionuclide incorporation only to non- occur cleavable structures

associate with host inflammatory response – unforeseen shifts in physiochemical propertie:

physiochemical properties (lipophilicity by carbon chain spacers / polarity by metal chelator conjugation) can

Conflict of Interest: All authors declare no conflict of interest.

*) Contact Details: T. Ebenhan | Preclinical Imaging | Associate Professor - University of Pretoria thomas.ebenhan@sanumeri.co.za | thomas.ebenhan@up.ac.za Session: Antimicrobial Discovery, Development & Optimization 15–30 June 2022

The 2nd International Electronic Conference on Antibiotics—Drugs for Superbugs: Antibiotic Discovery, Modes of Action And Mechanisms of Resistance

