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Introduction
The World Health Organization (WHO), it is recommended to consume at 

least 400 g per day of fruits and vegetables for a healthy diet, but this 
average consumption is only two-thirds of the minimum recommended 

amounts of fruits and vegetables 



3D FOOD PRINTER

• Vitamins
• Antioxidants
• Sugars
• Minerals
• Bioactive compounds

Protects against CHRONIC DISEASES

3D Printer

• Customization products
• Different shapes
• Use alternative sources
• Reduction of food waste

Advantages

Disadvantages

Not all foods can 
be extruded raw

Solution

Addition other
materials as 
hydrocolloids



Objectives
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Evaluate the effect of apricot pulp content on 
the printability and stability of bovine gelatin 

gels



Methodology
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Methodology

Samples
5% Bovine Gelatin

+
• 30% apricot pulp
• 50% apricot pulp
• 70% apricot pulp

Shape Design
Cylinder

• 3 cm diameter
• 1 cm height

Analysis
• ֯֯ Brix and pH
• Image Analysis
• Texture Profile Analysis

3D Printer
Nozzle diameter: 1.63 mm
Nozzle speed: 20 mm/s
Layer height: 1.63 mm
Infill: 100% rectilinear



Results and 
Discussion
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֯ Brix and pH Apricot Pulp

Brix: 10.68 ± 0.09 

pH: 3.60 ± 0.02
Table 1. Mean values (and standard deviations) of ֯Brix and pH of apricot gel.

* The letters (a-c= in columns indicate the homogeneous groups according to ANOVA (p < 0.05). 
(AP, apricot pulp; AG30%, apricot gel with 30% of apricot pulp; AG50%, apricot gel with 50% of 
apricot pulp; AG70%, apricot gel with 70% of apricot pulp).

Sample ° Brix pH

AG30% 8.7 ± (0.2)c 4.457 ± (0.006)a

AG50% 11.4 ± (0.3)b 4.21 (0.02)b

AG70% 14.5 ± (0.3)a 4.013 ± (0.006)c



Image Analysis

AG70% lower height 
deviation

Higher shape stability

Higher definition of the 
printing lines 

Figure 1. Deviations of the height parameter of the samples



Image Analysis

No significant differences
(p < 0.05)

Deviation of around 12%

Figure 2. Deviations of the area parameter of the samples



Image Analysis
Sample Top view Side view

AG30%

AG50%

AG70% Higher definition of the printing lines 

Less stable figure, low definition
of print lines

Figure 3. 3D printed samples top and side view just after printing



Sample H (N) A (N·s) C S G (N) R

AG30% 1.04 ± 0.09c -0.45 ± 0.07a 0.78 ± 0.02a 0.878 ± 0.015b 0.83 ± 0.06b 0.46 ± 0.03a

AG50% 1.39 ± 0.16b -0.3876 ± 0.1016a 0.758 ± 0018ba 0.91 ± 0.03a 1.06 ± 0.14a 0.442 ± 0.016a

AG70% 1.73 ± 0.15a -0.71 ± 0.16b 0.74 ± 0.06b 0.88 ± 0.02b 1.2 ± 0.2a 0.37 ± 0.03b

Texture Profile Analysis

Table 2. TPA test parameters.

* The letters (a-c= in columns indicate the homogeneous groups according to ANOVA (p < 0.05). (H, 
hardness; A, adhesiveness; C, cohesiveness; S, springiness; G, gummies; R, resilience; AG30%, apricot gel 
with 30% of apricot pulp; AG50%, apricot gel with 50% of apricot pulp; AG70%, apricot gel with 70% of 
apricot pulp).

AG70% needs the highest force to be deformed

AG50% presented a higher elasticity with respect to the rest.

AG70% and AG50% are the samples with the highest gumminess

Increasing the AP content in
the gels helps to maintain a
better structure of the printed
sample.



Conclusions
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As the pulp concentration in the gels increased, the ֯ Brix and pH were similar to the apricot pulp values.

The samples with the least deviations concerning height were the AG70% samples, the ones with the best 
structural stability.

The higher the concentration of apricot pulp in the gelatin gels, the greater the increase in soluble solids 
content and therefore the greater the structural stability and firmness of the sample.
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