

EFFECTS OF PARTIALLY SUBSTITUTING WHEAT FLOUR WITH TIGER NUT FLOUR ON THE

PHYSICAL AND SENSORY PROPERTIES OF DIFFERENT TYPES OF BREAD

Joshua Akanson¹, Nazir Kizzie-Hayford², Jerry Ampofo-Asiama², Ernest Ekow Abano¹

Department of Agricultural Engineering¹, Department of Biochemistry², College of Agriculture and Natural Sciences

University of Cape Coast, Cape Coast, Ghana.

1-15/10/2022

Background

- Tiger nut, a tuberous rhizome is a rich source of nutrients, phytochemicals, vitamins C and E
- Grows in temperate and tropical regions, especially in Ghana and several West African countries
- Investigated for use as vegetable milk, yoghurt, vegetable oils, biscuit, pasta egg tagliatelle, extruded products, bread etc.

Background

- Use for bread, a world-wide staple, could improve tiger nut utilization for food whilst enhancing properties of some types of bread (Oke at al. 2019)
- Several types of bread form a major staple in Ghana but
- Currently wheat flour is limited, affecting cost and access to bread in Ghana
- Partial substitution of wheat flour with tiger nut flour could be relevant

Aim of study

Research questions

- 1. What is the acceptable levels for partially substituting wheat flour with tiger nut flour in different bread types?
- 2. How does the substitution influence the physical and nutritional properties?
- 3. How does the substituting affect the sensory properties and consumer acceptability?

EXPERIMENTAL OUTLINE

Analyses:

Dhusical		Nuclearing
<u>Physical</u>	<u>Sensory</u>	<u>Nutrient</u>
Browning	Colour	Protein
Crust lightness	Aroma	Fat
Specific volume	Mouthfeel	Fiber
Firmness	Aftertaste	Ash
	Acceptability	Carbohydrate

•

Results: Effects on physical properties of butter, tea and sugar breads

Wheat flour (WF) substituted with various amounts of tiger nut flour (WF:TNF) in Sugar bread

Browning index

Results: Physical properties of butter, tea and sugar breads

- Butter bread showed the highest specific volume
- Partial substitution with TNF decreased the specific volume
- Effects of substitution levels on specific volume depends on the type of bread

<u>Specific volume</u>

Results: Physical properties of butter, tea and sugar breads

- Crumb firmness: Sugar bread
 (S_b) > Tea bread (T_b)
 >Butter bread (B_b)
- Storage significantly increased firmness of S_b & T_b but not B_b
- Effects of TNF on firmness insignificant for B_b

Crumb firmness during 3 d storage

Results: Consumer (n=56) scores for butter, tea and sugar breads

- B_b: improved aroma (all levels); mouthfeel, acceptability (10 or 30 %); aftertaste, overall highest rating (10 %)
- T_b: Low consumer scores; improved all attributes, highest consumer rating (25 %)
- S_b: marginal improvement
 in consumer acceptance (30 %)

ls);	Bread type	WF:TNF	Crumb	Crust	Aroma	Mouthfeel	Aftertaste	Overall
	Į	composit	appearance	appearance				Acceptability
or		e						
	Butter bread	100:0	6.98 ± 0.27 ^a	6.74 ± 0.29 ^a	5.76 ± 0.34 ^a	6.32 ± 0.32 ^a	6.04 ± 0.32 ^a	6.50 ± 0.33 ^a
	Į	90:10	7.06 ± 0.20 ^a	6.80 ± 0.25 ^a	6.80±0.23 ^b	6.98± 0.27 ^{ab}	7.10 ± 0.27 ^b	7.56 ± 0.23 ^b
	Į	85:15	6.02 ± 0.22 ^b	5.54 ± 0.29 ^b	6.26 ± 0.26 ^b	6.26 ± 0.26 ^a	6.52 ± 0.21 ^a	6.74 ± 0.20 ^a
	Į	80:20	6.80 ± 0.21 ^a	6.52±0.21 ^a	6.76 ± 0.17 ^b	6.42 ± 0.25 ^a	6.62 ± 0.21 ^a	6.92 ± 0.17 ^a
	Į	75:25	6.48 ± 0.26 ^{ab}	6.26±0.27 ^{ab}	6.22 ± 0.23 ^b	6.44 ± 0.21ª	6.58 ± 0.25 ^a	6.82 ± 0.23 ^a
		70:30	6.94 ± 0.22 ^a	6.80 ± 0.19ª	6.94 ± 0.17 ^b	7.00 ± 0.21 ^b	6.36 ± 0.18ª	7.32 ± 0.17 ^b
	Tea bread	100:0	5.00 ± 0.22 ^a	5.61 ± 0.29 ^a	4.52 ± 0.22 ^a	4.65 ± 0.26 ^a	4.69 ± 0.24ª	4.81 ± 0.27ª
		90:10	6.37 ± 0.22 ^b	5.74 ± 0.25 ^a	5.46 ± 0.20 ^b	5.67 ± 0.22 ^b	5.41±0.23b	5.57 ± 0.23 ^b
nest	Į	85:15	6.64 ± 0.20 ^b	6.22 ± 0.27 ^b	4.94 ± 0.28 ^a	5.50 ± 0.27 ^b	5.68 ± 0.25 ^b	5.64 ± 0.27 ^b
iC3L	Į	80:20	6.66 ± 0.19 ^b	6.40 ± 0.23 ^b	5.34 ± 0.27 ^b	5.72 ± 0.28 ^b	5.86 ± 0.30 ^b	6.08 ± 0.25 ^b
	Į	75:25	6.88 ± 0.14 ^b	6.64 ± 0.15 ^b	6.74 ± 0.18 ^c	6.98 ± 0.17 ^c	7.04 ± 0.15 ^c	7.18 ± 0.14 ^c
		70:30	6.82 ± 0.26 ^b	6.54 ± 0.15 ^b	6.76 ± 0.21 ^c	6.44 ± 0.27 ^c	6.50 ± 0.25 ^d	6.88 ± 0.25 ^d
	Sugar bread	100:0	7.16 ± 0.27ª	6.62 ± 0.28 ^a	5.86 ± 0.27 ^a	6.22±0.27ª	6.10 ± 0.25 ^a	6.68 ± 0.24 ^a
	Jugar Di cau	90:10	6.80 ± 0.21 ^a	6.62 ± 0.28 ⁻	5.80 ± 0.27 ^a	6.34±0.24 ^a	6.58 ± 0.19 ^a	6.52 ± 0.24 ^a
	Į							
	Į	85:15	6.86 ± 0.19 ^a	7.18 ± 0.16 ^b	6.10 ± 0.28 ^{ab}	6.50±0.23 ^{ab}	6.68 ± 0.19 ^{ab}	6.70±0.21 ^a
0()	Į	80:20	6.62 ± 0.17 ^{ab}	6.40 ± 0.22 ^a	5.78 ± 0.25 ^a	6.36 ± 0.25 ^a	6.44 ± 0.25 ^{ab}	6.48 ± 0.25 ^a
%)	Į	75:25	6.48 ± 0.26 ^b	6.26 ± 0.27 ^a	6.22 ± 0.23 ^b	6.44 ± 0.21 ^{ab}	6.58 ± 0.25 ^{ab}	6.82 ± 0.23 ^a
		70:30	6.50 ± 0.26 ^b	5.92 ± 0.31 ^c	6.32 ± 0.23 ^b	6.80 ± 0.22 ^b	6.58 ± 0.26 ^{ab}	6.86 ± 0.22 ^a
L.	L]

Results: GPA of group average plots for descriptors of Butter

- 26 different descriptors generated
- B_b: firm, moist, buttery, smooth and astringent
- T₁₀B_b: chewy, firm, sweet, porous, dry and caramel
- TNF affects bread attributes and can influence consumer acceptance

Results: Effects on proximate composition of breads

Nutrients	Tiger nut	*Butter bread		Tea bread		Sugar bread	
	flour	Without tiger nut flour	with 10% tiger nut flour	Without tiger nut flour	with 25 % tiger nut flour	Without tiger nut flour	with 30 % tiger nut flour
Protein	6.55 ± 0.23	12.67 ± 0.35 ^a	11.86 ± 0.33 ^b	13.56 ± 0.28 ^a	11.14 ± 0.34 ^b	12.92 ± 0.09 ^a	10.90 ± 0.08 ^b
Fat	8.25 ± 0.06	15.29 ± 0.07ª	16.30 ± 0.08 ^b	9.03 ± 0.01ª	10.04 ± 0.01 ^b	10.50 ± 0.22ª	11.34 ± 0.22 ^b
Fibre	9.52 ± 0.11	1.29 ± 0.05^{a}	2.10 ± 0.04 ^b	1.07 ± 0.04ª	3.49 ± 0.01 ^b	3.15 ± 0.09 ^a	5.17 ± 0.06 ^b
Ash	2.59 ± 0.05	1.43 ± 0.04ª	1.62 ± 0.04^{b}	1.30 ± 0.06ª	1.89 ± 0.07 ^b	1.06 ± 0.02^{a}	1.56 ± 0.02ª
СНО	73.09 ± 0.30	69.32 ± 0.48^{a}	68.79 ± 0.46^{b}	75.04 ±0.25ª	73.45 ± 0.29^{b}	72.36 ± 0.17^{a}	71.04 ± 0.15ª

*Values in the same rows of bread categories marked by different superscripts are significantly different at p<0.05

Bread products show

improved content of fat, fibre and mineralslower content of protein and carbohydrate

Conclusion

- Partial substitution of wheat flour with tiger nut flour (TNF) for bread
- increased bread brownness & specific volume in the order: $S_b > T_b > B_b$
- increased crumb firmness in the order: $S_b > T_b > B_b$
- 10 % TNF for B_b and 25 % TNF for T_b gave the highest consumer acceptance
- 30 % TNF improved some consumer-preferred attributes of S_b, but was not significant for overall consumer acceptance
- Substitution was important for improving fibre, fat and minerals and may be more relevant for improving the properties of B_b and T_b than S_b
- Future studies to focus on cost assessment and willingness-to-buy analyses

THANK YOU