

Hydrophobic and hydrophilic Deep Eutectic Solvents to obtain green extracts with biological activity

Viñas-Ospino A¹, Panić M², Blesa J¹, López-Malo D³, Frígola A¹, Radojčić-Redovniković I², Esteve MJ¹

¹Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department. Faculty of Pharmacy. University of Valencia. Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia.
²Laboratory for Cell Culture Technology and Biotransformations, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb. Pierotti Street 6, Zagreb, Croatia.
³Department of Nursery, European University of Valencia. Paseo de La Alameda, 7, 46010, Valencia (Valencia), Spain.

INTRODUCTION

THE AIM of the present study was to select the most promising DES for carotenoid extraction from orange peel and obtain green extracts with biological activity following the principles of green chemistry.

Deep eutectic solvents (DES)

S

METHODOLOGY

1. COSMOtherm screening

68 Hydrophobic and Hydrophilic DES

S

D

Ultrasound-assisted extraction

Total carotenoid content spectrophotometrically

3. Green extracts

4. Biological activity

Menthol: Eucalyptol (Me: Eu)

Lauric Acid: Octanoic acid (C12:C8)

Proline: Malic acid (Pro: MA) Choline chloride: Urea (ChChl: U)

In vitro antiproliferative assay HeLa cells

Results and discussion

	NADES	Abb	Ratio	β-carotene ln γ _{solutes}	β-cryptoxantin $\ln \gamma_{\text{solutes}}$
	Hexane	Hex	1	-0.27	2.06
	L-Menthol: D.L- Camphor	Me: Cam	1:1	0.56	-0.59
	L-Menthol: Eucalyptol	Me: EU	1:1	0.65	-0.37
	L-Menthol: Thymol	Me: Ty	3:2	1.28	0.07
	L-Menthol: Linoleic acid	Me: C18:2	1:1	1.48	0.19
	L-Menthol: Decanoic acid	Me: C10	1:1	1.81	0.41
	L-Menthol: Octanoic acid	Me: C8	1:1	1.94	0.03
	Thymol: Coumarin	Ty: Cou	3:2	2.01	0.20
	L-Menthol: Peryllic acid	Me: PA	1:1	2.07	0.40
	Thymol: Octanoic acid	Ty: C8	1:3	2.12	-0.20
	Lauric acid: Decanoic acid	C12·C10	1.3	2 55	0 31
YDROPHILLIC	Lauric acid: Octanoic acid	C12: C8	1:3	2.72	0.42
	Proline: Malic acid	Pro: Ma	1:1	16.80	13.59
	Betaine: Ethylene glycol	B: EG	1:2	17.74	14.84
	Choline Chloride: Lactic acid	ChChl: LA	1:3	17.87	14.86
	Sorbose: Ethylene glycol	Sor: EG	1:2	17.90	17.59
	Betaine: Lysine	B: Lys	1:1	18.25	15.37
DES	Betaine: Malic acid: Proline	B: Ma: Pro	1:1:1	18.53	15.60
	Fructose: Ethylene glicol	Fru: EG	1:2	19.20	18.90
	Choline: Chloride: Ethylene glycol	ChChl: EG	1:2	19.28	16.40
	Betaine: Sucrose	B: Suc	4:1	19.55	16.57
	Water		1	36.6	33.554

HYDROPHOBIC DES

High	
Medium	
Low	

D

S

Results and discussion

Total carotenoid content $(mg/100g_{fw})$ in hydrophilic and hydrophobic DES selected for model validation.

Effect of DES extracts on HeLa cell viability determined by the MTS assay, it was assessed in volume ratio 1% - 2% (v/v).

D

HeLa cells showed a 26.70% of cell viability in Menthol: Camphor extract

CONCLUSION AND FUTURE TRENDS

ACKNOWLEDGEMENTS

D

- This work was financially supported by the Ministry of Science and Innovation (Spain) -State Research Agency (PID-2019-111331RB-I00/AEI/10.13039/501100011033)
- "Generación Bicentenario" scholarship from the Ministry of Education of the Republic of Peru (PRONABEC).
- European Union through the European regional development fund, Competitive, ness and Cohesion 2014-2020 (KK.01.1.1.07.0007.) and by the Croatian Science Foundation (Grant No. 7712 and 9550).
- Agricultural Cooperative Sant Bernat from Carlet, Spain, donated the raw materials.