

GIS-AHP Approach to Select the Most Suitable Extraction System in Mediterranean Oak Coppices Under Environmental Constraints

Damiano Tocci¹, Francesco Latterini², Rachele Venanzi¹, Pierluca Gaglioppa³, Rodolfo Picchio¹ Correspondence:venanzi@unitus.it 1 Tuscia University, DAFNE Department

2 Institute of Dendrology, Polish Academy of Sciences

3 Lazio Region

GIS-AHP Approach to Select the Most Suitable Extraction System in Mediterranean Oak Coppices Under Environmental Constraints

ABSTRACT

The selection of the most suitable alternative for harvesting operations is a challenging activities which is manageable with the precision forest harvesting approach. In details, an approach based on a combination of GIS (Geographic Information System) and AHP (Analytic Hierarchy Process), relying on geospatial data and opinion of experts in the topic of forest engineering was applied in the Natural Reserve of Lamone (Latium, Italy) to select the most suitable extraction system in the oak coppice forests of the study area. The developed approach allowed for the selection among forwarder, forestry-fitted farm tractor equipped with winch and all-terrain cable yarder. The obtained results indicated that forwarder was the most suitable extraction system for the major part of the study area, while the application of winch was limited to forest parcel with high forest road density. All-terrain cable yarder was instead identified as the best alternative only in areas with low soil bearing capacity.

KEYWORDS

cable skidder, forwarder, cable yarder, roughness, slope

INTRODUCTION

- The selection of the best alternative for timber extraction is a fundamental issue in the framework of sustainable forest operations
- There is the need to increase the level of objectivity in the choice, which, in the context of the study area, is currently generally left for the operational phase without a proper planning
- We developed a GIS-AHP approach to identify the best alternative for timber extraction in oak coppices located in Central Italy
- We considered three extraction machines: forwarder, cable skidder and all-terrain cable yarder
- Our study area was the Natural Reserve Selva del Lamone

M & M

- Following the procedure developed by Latterini et al. (2022) we retrieved, from the local forest management plan and from preliminary GIS analysis, data about 6 environmental and operational variables
- Slope (%)
- Extraction distance (m)
- Roughness (%)
- Soil bearing capacity (kPa)
- Extracted timber amount (m³/ha)
- Viability density (m/ha)

Slope

Extraction distance

Extracted timber amount

Soil bearing capacity

Roughness

								Criterio	a l				
	Extraction	Slope		Extraction Distance		Soil Bearing Capacity		Extracted Timber Amount		Road Density		Roughness	
	System	Range (%)	Score	Range (m)	Score	Range (kPa)	Score	Range (m³ ha ⁻¹)	Score	Range (m ha ⁻¹)	Score	Range (%)	Score
	Forwarder	0–20	5	0-100	5	>80	5	>200	5	>207	5	0–15	5
		20–40	4	100- 200	5	60–80	4	100–200	4	138–207	4	15–30	4
		40–60	1	200– 400	4	40–60	2	80–100	3	69–138	3	30–45	1
		>60	0	>400	1	<40	0	<80	1	<69	1	>45	0
	Cable Skidder	0–20	5	0-100	5	>80	5	>200	5	>207	5	0–15	5
		20–40	5	100- 200	1	60–80	5	100–200	5	138–207	5	15–30	5
		40–60	4	200- 400	0	40–60	3	80–100	4	69–138	4	30–45	4
		>60	2	>400	0	<40	1	<80	3	<69	2	>45	3
\mathbb{N}	Medium gravity Cable Yarder	0–20	0	0–100	1	>80	5	>200	5	>207	5	0–15	5
X		20–40	4	100- 200	3	60–80	5	100–200	5	138–207	5	15–30	5
		40–60	5	200- 400	5	40–60	5	80–100	4	69–138	4	30–45	5
		>60	5	>400	5	<40	3	<80	1	<69	3	>45	4

	Forwarder											
	Criteria	S	ED	SBC	ETA	RD	RG	weights	CR			
	S	1	1	0.5	1	1	1	0.143				
	ED	-	1	0.5	1	1	1	0.143				
	SBC	-	-	1	2	2	2	0.286	0.00			
	ETA	-	-	-	1	1	1	0.143	01			
	RD	-	-	-	-	1	1	0.143				
	RG	-	-	-	-	-	1	0.143				
	Cable Skidder											
	Criteria	S	ED	SBC	ETA	RD	RG	weights	CR			
RTS	S	1	0.5	1	2	0.5	1	0.136				
	ED	-	1	2	3	1	2	0.259				
	SBC	-	-	1	2	0.5	1	0.136	0.00			
	ETA	-	-	-	1	0.3333	0.5	0.075	2			
	RD	-	-	-	-	1	2	0.259				
	RG	-	-	-	-	-	1	0.136				
	Medium Gravity Cable Yarder											
	Criteria	S	ED	SBC	ETA	RD	RG	weights	CR			
	S	1	1	3	0.3333	1	3	0.161				
	ED	-	1	3	0.3333	1	3	0.161				
	SBC	-	-	1	0.2	0.3333	1	0.06	0.01			
	ETA	-	-	-	1	3	5	0.399	0.01			
	RD	-	-	-	-	1	3	0.161				
	RG	-	-	-	-	-	1	0.06				

Results: forwarder suitability

Results: winch suitability

Results: all-terrain cable yarder suitability

Results: forest harvesting plan

Results: forest harvesting plan

Discussion

- The most important parameter for selecting a forwarder for timber extraction resulted to be soil bearing capacity
- To select a cable skidder the most influencing parameters were the ones related to the presence of current viability (viability density and extraction distance)
- For all-terrain cable yarder the most important parameter resulted to be the amount of extracted timber
 - Forwarder resulted the system most suitable for the major part of the surface, cable skidder resulted suitable along the existing viability while all-terrain cable yarders resulted suitable in the presence of the highest extracted timber amount and in conditions of low soil bearing capacity