
VNetOS: Virtualised Distributed and

Parallel Sensor Network Operating

Environment for the IoT and SHM

For Educatuion and Research

Stefan Bosse
1,*

1
University of Bremen, Dept. Mathematics & Computer Science, Bremen, Germany

*
Presenting author

1 / 24



Overview

 How can we compose and evaluate distributed sensor networks?

Stefan Bosse - Sensor Network Operating Environment - Overview

2 / 24



Overview

 How can we compose and evaluate distributed sensor networks?

 How can we design an universal and simple operating system for distributed

sensor networks?

Stefan Bosse - Sensor Network Operating Environment - Overview

3 / 24



Overview

 How can we compose and evaluate distributed sensor networks?

 How can we design an universal and simple operating system for distributed

sensor networks?

 We have to address education as well as research as well as application!

Stefan Bosse - Sensor Network Operating Environment - Overview

4 / 24



Challenges

Dealing with distributed and parallel computing in strong heterogeneous

environments, e.g., distributed sensor networks, is still a challenge at the:

algorithmic,

communication, and

application levels.

Heterogeneity is related to different computer and network (communication)

architectures

Virtualization can hide and unify heterogeneity.

Stefan Bosse - Sensor Network Operating Environment - Overview

5 / 24



Challenges



Besides inter-process communication and synchronization, the unified access

and monitoring of computing nodes (devices, computers, processors) is

required to handle distributed and parallel systems in a comfortable and easy-

to-access manner.

Stefan Bosse - Sensor Network Operating Environment - Overview

6 / 24



Summary and Highlights

In this work, a unified distributed and parallel framework and Web tools are

introduced using Virtual Machines (VM) and Web browsers to control

them.

1. The framework enables the control, monitoring, and study of distributed-parallel

systems, especially addressing sensor networks and IoT networks.

2. Nodes can be arranged in a graphical drawing world or script-based.

Stefan Bosse - Sensor Network Operating Environment - Overview

7 / 24



Summary and Highlights

3. Virtual network nodes are assigned to VM instances that can be created inside the

browser using WebWorker processes or can be attached to externally running VM

instances via a Web control API.

4. New VM instances or processes can be started and controlled instantly.

5. The graphical UI provides access to the internal and external nodes, programming

editors, and monitor shells.

6. The VMs can be generic, but in this work there is a focus on JavaScript and Lua.

The framework provides augmented virtuality, i.e., a coupling of physical and

virtual worlds

Stefan Bosse - Sensor Network Operating Environment - Overview

8 / 24



Network Architecture

The general architecture consists of a generic network graph G=⟨N,P,C⟩ with

VM nodes N that can process a textual programming language L, a set of

communication ports P attached to nodes, and communication connections

(links) L between ports.

Stefan Bosse - Sensor Network Operating Environment - Network Architecture

9 / 24



Hardware and Software - Complete

Three different programming language VMs are considered in this work:

1. JavaScript (using V8/Spidermonkey/jerryscript [JERR] engines);

2. Lua (C-Lua, eLua, LuaJit [LUAJ], Fengari Web/VM-in-VM [FENG]);

3. JavaScript Agent Machine (JAM, programmed in JS, VM-in-VM, [BOS18A]).

Three different host computers are considered:

1. Generic desktop and mobile laptop computers (x86,x64, 2 cores, 2GHz clock)

supporting all VMs;

2. Embedded system Raspberry PI (Zero, 3, Arm, 1-2 cores, 1GHz clock) supporting

all VMs;

3. Tiny embedded system ESP32 (Tensilica, 2 cores, 240MHz clock) supporting Lua

primarily and JS VMs secondarily.

Stefan Bosse - Sensor Network Operating Environment - Network Architecture

10 / 24



Hardware and Software - Complete

There are two meta classes of VM APIs used in the framework:

A. A root meta VM that is the main process providing a Web RPC API to create and

control worker processes;

B. The real target VM (JS, Lua, FORTH, ...) that is executed in a worker process,

providing an RPC service (especially for IO), too.

Stefan Bosse - Sensor Network Operating Environment - Network Architecture

11 / 24



Fig. 1. (a) General software framework and communication architecture with internal (double outline),

external mapper (single outline), and external (dashed line) nodes. There are management communication

ports (mPort) for connecting Web controllers with external nodes and generic communication ports (cPort) for

inter-node communication (b) Message multiplexer architecture

Stefan Bosse - Sensor Network Operating Environment - Network Architecture

12 / 24



Software Framework

Stefan Bosse - Sensor Network Operating Environment - Software Framework

13 / 24



VNetOS

The VNetOS software framework consists of the following parts:

1. The Web browser GUI application with a 2D graphical network world consisting of

graphical node entities with communication links between nodes,

code editors with syntax highlighting,

process monitor and interactive shell windows,

and external node controllers;

2. Internal VMs that can be embedded in the Web browser, i.e., can be provided in

JavaScript or WebAssembly;

3. External VMs with a Web RPC service that have virtual shadow nodes in the Web

GUI;

4. A set of programming modules supporting parallel and distributed programming

(like CSP modelling, sensor access, RPC; for each target VM language there is an

implementation).

Stefan Bosse - Sensor Network Operating Environment - Software Framework

14 / 24



Nodes

Three different node classes are distinguished:

I-Node

Internal node with an embedded meta VM processed by the browser JS VM.

P-Node

External node processed by a native VM.

V-Node

Virtual wrapper (twin) of a p-node in the Web browser with NMP access and

control.

Stefan Bosse - Sensor Network Operating Environment - Software Framework

15 / 24



OS JS                     

Stefan Bosse - Sensor Network Operating Environment - Software Framework

16 / 24



Preliminary Experiments and Results

Stefan Bosse - Sensor Network Operating Environment - Preliminary Experiments and Results

17 / 24



Experiments

Three principle experiments were performed:

1. Network of 16/8 internal nodes arranged in a 2D mesh-grid;

2. Network of 16/8 external nodes arranged in a 2D mesh-grid;

3. Hybrid 8 internal + 8 external nodes.

Stefan Bosse - Sensor Network Operating Environment - Preliminary Experiments and Results

18 / 24



Example

Fig. 2. Typical network application using VNetOS, a Web browser, and Raspberry PI Zero devices: Four

internal and two external nodes connected via WLAN. For each VM instance there is a code editor and an IO

monitor shell window. Internal and external nodes can communicate directly via HTTP.

Stefan Bosse - Sensor Network Operating Environment - Preliminary Experiments and Results

19 / 24



Results

Host dhry/s VM tiVM miVM tcmsg

PC/nodejs 5000k JS (ext) 140ms 20MB 3ms

PC/Firefox 4200k JS (int) 100ms 10MB 4ms

PC/plvm 600k Lua, Parallel LuaJit(+libuv) (ext) 3ms 800kB 0.1ms

Raspberry PI Zero/nodejs 230k JS 1600ms 20MB 40ms

Raspberry PI Zero/plvm 40k Lua, Parallel LuaJit(+libuv) (ext) 10ms 800kB 1ms

ESP32/Lua 1k Lua, FreeRTOS (ext) 100ms 100kB 5ms

Tab. 1. miVM: Base memory (RAM+ROM), tiVM: VM Instantiation time, tcmsg:Communication time

between nodes

Stefan Bosse - Sensor Network Operating Environment - Preliminary Experiments and Results

20 / 24



Results

1. Lua can be easily embedded and forked using multi-threading, whereas node.js

requires system process creation (at least some time ago), resulting in an instance

creation time 100 times higher.

2. Communication time is limited due to core bandwidth/latency and by the

process/thread scheduling times required for message multiplexer invocation.

3. Lua (LuaJit) shows superior performance compared to node.js/V8-based VMs and is

a suitable VM for (tiny) embedded systems.

4. The base memory requirement for node.js (and Web browser engines) pose the

highest start-up times and memory requirements, but also the highest computational

power.

Stefan Bosse - Sensor Network Operating Environment - Preliminary Experiments and Results

21 / 24



Conclusions

A novel distributed virtualization framework for the deployment and control of

heterogeneous networks of generic and embedded systems was introduced.

The control of the distributed network is performed by a graphical Web browser

application (or alternatively, script-based).

Via the Web application, each node can be controlled by the NMP protocol.

Each physical node has a virtual representation in the Web application

The physical and virtual nodes are connected via NMP.

Stefan Bosse - Sensor Network Operating Environment - Conclusions

22 / 24



Each root node supports a programmable target VM (e.g., JS, Lua) and can

instantiate (fork) VM worker processes.

VM instances can be connected with each other by using generic

communication ports.

The routing of messages is performed by a message router.

Evaluation of the node performance identified VM forking and message routing

times as critical, but strongly dependent on the underlying VM (LuaJit forking is

100 times faster than node.js).


Even tiny embedded systems can be used for distributed programming and

processing. Besides education, simulation and generic distributed network

control are core applications.

Stefan Bosse - Sensor Network Operating Environment - Conclusions

23 / 24



VNetOS: Virtualised Distributed and

Parallel Sensor Network Operating

Environment for the IoT and SHM

For Educatuion and Research

Stefan Bosse
1,*

1
University of Bremen, Dept. Mathematics & Computer Science, Bremen, Germany

*
Presenting author

Stefan Bosse - Sensor Network Operating Environment - Conclusions

24 / 24


