

Eng. Proc. 2022, 4, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/engproc

Proceedings

Robust Underwater Image Classification using Image Segmen-

tation, CNN, and dynamic ROI Approximation †

 Stefan Bosse1,* and Parth Kasundra 2

1 University of Bremen, Dept. of Mathematics and Computer Science, Bremen, and Institute for Digitization,

28359 Bremen, Germany, sbosse@uni-bremen.de
2 Marinom GmbH, 28359 Bremen, Germany

* sbosse@uni-bremen.de

† Presented at the 9th International Electronic Conference on Sensors and Applications, 1–15 November 2022;

Available online: https://ecsa-9.sciforum.net.

Abstract: Finding classified rectangular Regions of Interest (ROI) in underwater images is still a

challenge, moreover if the images pose low quality with respect to illumination conditions, sharp-

ness, and noise. These ROIs can help to find relevant regions in the image quickly by humans, or

they can be used as an input for automated structural health monitoring (SHM). This task itself

should be done automatically, e.g., used for underwater inspection. Underwater inspection of tech-

nical structures, e.g., piles of sea mill energy harvester, typically aims to find material changes of

the construction, e.g., rust or coverage with pocks, to make decisions about repair and to assess the

operational safety. We propose and evaluate a hybrid approach with segmented classification using

small-scaled CNN classifiers (with less than 20000 hyper parameters and 3M unity vector opera-

tions) and a reconstruction of labelled ROIs by using an iterative mean and expandable bounding

box algorithm. The iterative bounding box algorithm combined with bounding box overlap check-

ing suppress spurious wrong segment classifications and represent the best and most accurate

matching ROI for a specific classification label, e.g., surfaces with pocks coverage. The overall clas-

sification accuracy (true-positive classification) with respect to a single segments is about 70%, but

with respect to the iteratively expanded ROI bounding boxes it is about 90%.

Keywords: Image Classification; Region-of-interest detection; Underwater

1. Introduction

The underwater inspection of technical structures, e.g., construction parts of off-

shore wind turbines like piles, involves the identification of various parts in the under-

water images. In this work using given videos/pictures the following things can be in-

cluded:

1. Background with water, bubbles, and fishes, summarized as feature class B;

2. Technical structure, e.g., a mono pile of a wind turbine, summarized as feature class

P;

3. Formation of coverage with marine vegetation or organisms on the surface of the

structure, summarized as feature class C.

Currently, for the inspection of the mono pile, divers have to go under water. But

even if humans inspect the underwater surfaces (underwater by the diver or remotely),

the scenes are cluttered and the identification of surface coverage is a challenge. Auto-

mated visual inspection is desired to reduce maintenance and service times.

Finding classified rectangular Regions of Interest (ROI) in underwater images is still

a challenge. These ROIs can help to find relevant regions in the image quickly by humans,

or they can be used as an input for automated structural health monitoring (SHM). This

task itself should be done automatically, e.g., used for underwater inspection. Underwa-

ter inspection of technical structures, e.g., piles of sea mill energy harvester, typically aims

Citation: Bosse, S.; Kasundra, P.

Robust Underwater Image Classifi-

cation using Image Seg-mentation,

CNN, and dynamic ROI Approxi-

mation. Eng. Proc. 2022, 4, x.

https://doi.org/10.3390/xxxxx

Academic Editor: Stefano Mariani

Published: 1 November 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Eng. Proc. 2022, 4, x FOR PEER REVIEW 2 of 4

to find material changes of the construction, e.g., rust or coverage with pocks, to make

decisions about repair and to assess the operational safety.

The images taken from video recording during diving contain typical changing and

highly dynamic underwater scenes consisting of ROIs related to the above introduced

classes background (not relevant), technical construction surface, and modified surfaces

(rust/coverage), with the highest relevance.

The aim is the development of an automatic bounded region classifier that is at least

able to distinguish between background, construction, and construction + coverage clas-

ses. The challenge is the low and varying image quality that typically appears in North-

and East-sea underwater imaging. The images, typically recorded by a human diver or an

AUV, pose low contrast, varying illumination conditions and colours, different viewing

angles and spatial orientation and scale, overlaid by mud and bubbles (e.g., from the air

supply), and optical focus issues.

We propose and evaluate a hybrid approach with segmented classification using

small-scaled CNN classifiers (with less than 10 layers and 100000 hyper parameters) and

a reconstruction of labelled ROIs by using an iterative mean and expandable bounding

box algorithm. The iterative bounding box algorithm combined with bounding box over-

lap checking suppress spurious wrong segment classifications and represent the best and

most accurate matching ROI for a specific classification label, e.g., surfaces with pocks

coverage. The overall classification accuracy (true-positive classification) with respect to

a single segments is about 70%, but with respect to the iteratively expanded ROI bounding

boxes it is about 90%.

The image segment classification and ROI detection algorithms should be capable to

be implemented on embedded systems, e.g., directly integrated in camera systems with

application specific co-processor support.

The aim is to achieve an accuracy of at least 85-90% for the predicted images, with a

high degree of generalization and independence from various image and environmental

parameters such as lighting conditions and background colouration, as well as relevant

classification features.

2 Related Work

Overall, there is a lack of freely available image data sets from the underwater area,

discussed by Chongyi Li et al. [3]. A possible image data set from the underwater area can

be found in the Underwater Image Enhancement Benchmark (UIEB DS). These are not

specifically technical components such as ship hulls. Further data sets for underwater im-

ages are, for example, the Fish4Knowlege data set (Fish4Knowledge DS) for the detection

and acquisition of underwater targets; underwater images in the SUN data set for scene

recognition and object detection (SUN DS); MARIS data set for Autonomous Marine Ro-

botics (MARIS DS); Sea-thru data set with 1100 underwater images with range maps;

Haze-line data set with raw images, TIF files, camera calibration files and range maps [4].

Chongyi Li et al. however, criticize the listed data sets that they usually have monotonous

content, limited scenes, few degradation features and, above all, lack of reference images.

Also Mittal et al. criticize a non-existent large-scale dataset, which is why they use data

augmentation, since it is impossible to train CNN with scarce data [2]. Another dataset

can be found on ImageNet database, created by Yifeng Xu et al. [5]. The database

ImageNet 2012 included 1000 classes with 15 million labelled high-resolution images

(ImageNet DS).

According to Mittal et al. [2] have CNNs already shown better predictive perfor-

mance than traditional image processing or machine learning methods.

Luo et al. evaluate pre-processing, segmentation, and post processing for an accurate

classification of 108 plankton classes. The authors use greyscale images, which are fraught

with noise and unevenness in greyscale and contrast. In flat fielding, a calculated calibra-

tion frame is subtracted from the raw image. They use histogram normalization to nor-

malize the contrast in each image, which allows for better segmentation of ROIs.

Eng. Proc. 2022, 4, x FOR PEER REVIEW 3 of 4

Extremely noisy images, i.e. those with a signal-to-noise (SNR) below 25, are sorted out.

Then use the K-harmonic mean clustering to detect and segment the ROIs.

Deep et al. [6] propose a CNN model and two CNN+shallow models for the classifi-

cation of living fish species. In their dataset, most of the images are noise-free but out of

focus. Therefore, the images are first preprocessed with an image sharpening method to

improve the edges in the images. They are using a slightly modified Laplacian kernel,

where the sum of all kernel elements is one instead of zero. This kernel produces a colour

image, while the original Laplacian kernel produces a binary image.

3 Image Sets

The images set consists of different underwater images with a high variance in illu-

mination conditions, spatial orientation, noise (bubbles, blurring), and colour palettes.

The images are snapshots taken from videos recorded by a human diver. The images are

used for supervised ML requiring explicit labelling. The labelling is done by hand by in-

teractive drawing of labelled closed polygon paths assigning regions of the images to a

specific class. There are areas remaining with no / unknown labelling.

4 Methods and Architecture

In addition to the evaluation of suitable algorithms and classification models, this

work compares two different software frameworks:

1. Native software code using widely deployed TensorFlow-Keras with GPU support

[7];

2. Pure JavaScript code using PSciLab with WokBooks and Workshells [1] (processed by

a Web browser and node.js), using a customized version of the ConvNet.js trainer for

CNNs.

The second framework stored all data in SQL data bases as well as trained models

(JSON format). The SQL data bases (SQLite3) can be accessed remotely via a SQLjson Re-

mote Procedure Call (RPC) interface. The TensorFlow framework used the local filesys-

tem for data storage. Any computer processing TensorFlow needed a copy of the entire

data sets.

Both software frameworks used the same input data and functionally and structural

equivalent CNN architectures.

Figure 1. Overview of the data flow architecture and the used algorithms

Eng. Proc. 2022, 4, x FOR PEER REVIEW 4 of 4

Figure 2. Web browser-based software architecture with remote worker processes [1]

4.1 Image Segmentation

On the first processing level the input images will be segmented in equally sized sub-

images, e.g., RGB segments of 64 × 64 pixels. Each image segment is related to one of the

classes σ ∈ {B,P,C} or unknown (U). A conventional CNN with two convolutional layers

is used to predict the class σ ∈ {B,P,C} for each single image segment. The CNN is trained

with a sub-set of randomly chosen labelled image segments.

4.2 Convolutional Neural Network Architecture

Four different CNN architectures and parameter settings were evaluated, summa-

rized in Tab. 5 (Appendix A), assuming a segment input site data volumes with 64 × 64 ×

3 (RGB) elements (derived from the RGB video images). There are two convolutional lay-

ers in all architectures, and the hyper parameter number ranges from 20k to 60k. Both

software frameworks used the same CNN architecture and configuration. The smallest

CNN model compared with the largest requires about 1/4 of the unit vector operations

and about 1/3 of the hyper parameters that must be trained.

4.3 Image ROI Classification

The basic algorithm and workflow for automated ROI classification:

1. Segmentation of each input image with static size segments;

2. Parallel prediction of the image segment class by the CNN;

3. Creation of a class prediction matrix C^ with rows and columns representing the spa-

tial distribution of the image segments in the original input image; the matrix M is

considered as a point cloud with cartesian point coordinates related to the matrix

〈row,column〉 tuple;

4. Computation of spatial class element clusters using the DBSCAN algorithm; parame-

ters 6epsilon; and minPoints must be chosen carefully (e.g., ε=2, minPoints=5);

5. Applying a Mean Bounding Box (MBB) algorithm to the point elements of each cluster

computing the mass-centred average bounding box (typically under-sized with re-

spect to the representative points in the clusters);

6. Applying an MBB extension iteratively to grow the bounding box but still suppress-

ing spurious (wrong) image segments;

7. Remove small(er) bonding boxes covered by larger bounding boxes (either with dif-

ferent or same class) or shrink overlapping bounding boxes of different classes by

priority decision (shrink less important regions);

8. Mark the original input image with ROI rectangles computed from the previous step;

Eng. Proc. 2022, 4, x FOR PEER REVIEW 5 of 4

Iteratively expanded bounding boxes from different classes can overlap, which is an

undesired result. To reduce overlapping conflicts, a class priority is introduced. In this

work, coverage on construction surfaces has the highest priority to be detected accurately.

After the ROI expansion is done, overlapping bounding boxes with lower priority are

shrink until all overlap conflicts are resolved.

4.4 Training and Labelling

For training, a selected and representative sub-set of images (246 images) are ex-

tracted from the diving video. Each image is labelled manually by adding relevant and

strong ROI polygons to each image. Based on the labelled and closed polygon paths, each

image is segmented with a static segment size. All segments from an image are stored in

a SQL database table. With respect to a given image size of 1920 × 1080 pixels, a chosen

segment size of 64 × 64 pixels, there are about 120000 small labelled image segments. Seg-

ment images not covered by any of the labelled polygon paths are automatically marked

with the class "Unknown". Only strong and clearly classifiable regions are created, shown

in Fig. 4. Remaining unlabelled regions will not be considered for the training process.

The training process selects randomly a balanced sub-set of the image segments (e.g.,

1000) with respect to the class label distribution, i.e., providing a normal distribution of

the class labels among the training and validation data set. Multiple models are trained in

parallel. Each model is trained with a different set of segments and with random initiali-

sation of the model parameters using Monte Carlo simulation.

The TensorFlow framework used an Adam optimizer with a very low learning rate

of 0.001. The ConvNetJS CNN framework used an adaptive gradient optimizer with a

moderate learning rate of 0.1 and a high momentum of 0.9. Each convolution layer had an

l2 regularization loss with l2=0.01 in TensorFlow framework and l2=0.001 in the Con-

vNetJS framework.

Figure 4. Example of the manual labelling of polygon path bounded regions (Top, Left) Original

image (Top, Right) With labelled polygon regions (Bottom) Segmented images

Eng. Proc. 2022, 4, x FOR PEER REVIEW 6 of 4

4.5 Mean Bounding Box Algorithm

In this section the Mean Bounding Box (MBB) algorithm is introduced. There is a set

of class symbols Σ and a class matrix M^ consisting of elements labelling an image segment

with a class, so that:

  

1,1 1,

2,1 2,

,1 ,

..

..
, , ,

..

..

j

j

i i j

B P C U M

 

 


 

 
 
  =  =
 
  
 

 (1)

The matrix M^ is flattened to a point cloud list set P={pσ}σ∈Σ. Each class set p contains

the matrix positions of the respective elements, i.e., pσ={ 〈i,j〉}, with all points classified by

the CNN to the same label class σ∈Σ.

The DBSCAN clustering will return a group list of points that satisfy the clustering

conditions, one point group list for each label class, as shown in Fig. 5 (a).

      
   

2

: , , ,.. ,

: , 1,2,3,..,

,

j k lk lj

i i

i

DBSCAN P p p p j k l

P p i n

p i j R

→  

=

= 

 (2)

It is assumed that a cluster will contain a majority of correctly classified points (seg-

ments), and a minority of scattered wrong classified points.

Figure 5. Iterative bounding box expansion with final conflict overlapping shrinking

The MBB algorithm computes points 〈x1,y1,x2,y2〉 of a bounding box that is centred at

the mass-of-centre point c of all points of a cluster and with outer sides given by the vec-

torial mean centred position of all points above or below, and left or right form the c point,

as shown in Alg. 1 and in Fig. 5 (b).

 1: function massOfCenter(points)

 2: pc = { x=0, y=0 }

 3: ∀p ∈ points do
 4: pc.x := pc.x+p.x, pc.y := pc.y+p.y

 5: done

 6: pc := pc / |points|

 7: return pc

 8: end

 9: function meanBBox(points)

10: pc = massOfCenter(points)

11: // Initial bbox around mass-of-centre point

Eng. Proc. 2022, 4, x FOR PEER REVIEW 7 of 4

12: b = { x1=pc.x, y1=pc.y, x2=pc.x, y2=pc.y }

13: c = { x1=1, y1=1, x2=1, y2=1 }

14: ∀p ∈ points do
15: // each point extends the bbox

16: if p.x>pc.x then incr(c.x2), b.x2 := b.x2+p.x

17: if p.x<pc.x then incr(c.x1), b.x1 := b.x1+p.x

18: if p.y>pc.y then incr(c.y2), b.y2 := b.y2+p.y

19: if p.y<pc.y then incr(c.y1), b.y1 := b.y1+p.y

20: done

21: // normalize bbox coordinates

22: b.x1 := b.x1 / c.x1, b.x2 := b.x2 / c.x2

23: b.y1 := b.y1 / c.y1, b.y2 := b.y2 / c.y2

24: return b

25: end

Algorithm 1. Mean Bounding Box Algorithm applied to a two-dimensional point cloud

The expansion of a previously computed bounding box is done by all points outside

of the current bounding box, performing the next extension iteration. Again, a spatial po-

sition averaging is performed, extending the boundary of the bound box, shown in Alg.

2. The expansion is performed iteratively. Each step includes more points, but increases

the probability that the bound box is over-sized with respect to spurious outlier points

that result from wrong CNN classifications.

 1: function meanBBoxExpand(points,b)

 2: pc = massOfCenter(points)

 3: // start with the old bbox

 4: b2 = { x1=b.x, y1=b.y, x2=b.x, y2=b.y }

 5: c = { x1=1, y1=1, x2=1, y2=1 }

 6: ∀p ∈ points do
 7: // each point outside the old bbox extends the new bbox

 8: if p.x>b.x then incr(c.x2), b2.x2 := b2.x2+p.x

 9: if p.x<b.x then incr(c.x1), b2.x1 := b2.x1+p.x

10: if p.y>b.y then incr(c.y2), b2.y2 := b2.y2+p.y

11: if p.y<b.y then incr(c.y1), b2.y1 := b2.y1+p.y

12: done

13: // normalize bbox coordinates

14: b2.x1 := b2.x1 / c.x1, b2.x2 := b2.x2 / c.x2

15: b2.y1 := b2.y1 / c.y1, b2.y2 := b2.y2 / c.y2

16: return b2

17: end

Algorithm 2. Mean Bounding Box expansion applied to a two-dimensional point cloud and mean

bound box

In case of high iteration loop values, bounding boxes from different classes can over-

lap. To reduce overlapping conflicts, a class priority is introduced layering the class re-

gions by relevance. After the ROI expansion is done, overlapping bounding boxes with

lower priority are shrink until all overlap conflicts are resolved. Commonly, more than

one side of the bounding box can be shrunken to reduce the overlap conflict. The possible

candidates are evaluated and sorted with respect to the amount of shrinkage at each side.

The lowest shrinkage is applied first. If the conflict is not reduced by the selected side

shrinking, the next side is shrink until the conflict (with one or more higher priority

bounding boxes) is reduced, as shown in Fig. 5 (c).

5 Results

The original numeric loss computed from the softmax layer and returned by the

trainer is not a measure for the discrete prediction accuracy, i.e., the number of correct and

Eng. Proc. 2022, 4, x FOR PEER REVIEW 8 of 4

incorrect predicted segment classes, which are achieved after binarization and maximum

best-of selection. This is an indicator for a low separation margin in the target feature

space. There is no significant difference in the accuracy, recall, and precision in the train-

ing and test data set, shown in Tab. 1. Examples of classified bounding boxes are shown

in Fig. 6. Because only the C class (coverage of construction surface) is of high relevance

(the highest priority), only the particular classification percentages for this class are shown

in the last column in Tab. 1. The average prediction error for all classes is about 10% with

low variance across different models trained with different sub-sets from the entire data

space and each with different random initialisation. The average error for specific classes

differ significantly. The relevant class C shows a prediction error (¬ C) about 20% with

respect to samples and a high variance across different models. Splitting the prediction

accuracy in the tuple true positive (C), false positive (¬ C), true negative (¬ C), and false

negative (C), the average TP prediction accuracy is about 80%.

We get the following average statistical measures for the class prediction of single

image segments:

1

0.92 train
TP TN

Accuracy 0.91 test
TP FP FN TN

0.92 all

0.94 train
TP

Precision 0.94 test
TP FP

0.94 all

0.88 train
TP

Recall 0.88 test
TP FN

0.88 all

0.95 train
TN

Specificity 0.95 test
TN FP

0.95 all

2f


+ 

= = 
+ + + 






= = 
+ 






= = 
+ 






= = 
+ 



= 

0.9 test
Recall Precision

0.9 train
Recall Precision

0.9 all


 

= 
+ 



 (3)

Prediction results for training and test data do not differ significantly and show sim-

ilar high statistical measures, which is an indicator for a representative training data sub-

set and a sufficiently generalised predictor model.

Considering the bounding box estimator post-processing, the FP rate of the priority

class C is nearly zero. The average coverage of the predicted and estimated C area is about

50%, showing an underestimation. The TP rate of class C regions is about 70%.

Finally, the different CNN architectures are compared with respect to classification

accuracy in Tab. 3. There is no significant degradation of the classification accuracy ob-

served.

In addition to a three-class predictor, a four-class predictor was evaluated, too. An

arbitrary unknown class U was added to the class set (i.e., a void class covering "all other"

cases). There were no significant improvement in prediction accuracy of the classes B/P/C

observed. A confusion matrix plot of a image segment classification example is shown in

Fig. 7. Reducing the image segment size by a factor 2 increase classification errors signifi-

cantly, suggesting the 64 × 64 segment size as an lower limit.

Eng. Proc. 2022, 4, x FOR PEER REVIEW 9 of 4

Figure 6. Classified bounding boxes for one image using four models trained in parallel (same

parameters) but with different random initialisation and training data sub-set (Blue: class back-

ground, red: class coverage, green: class free construction surface)

Data Set Total error (¬TPC) % Error (¬TPC)/class % Prediction accuracy/Class C (TP,FP,TN,FN) %

Training 10.6 ±1.5 5.0 ±3.4,6.0 ±2.8,21.0 ±7.1 79.0 ±7, 4.8 ±2, 94.7 ±6.6, 10.5 ±3.1

Test 11.1 ±1.8 5.8 ±2.6, 5.8 ±3.2, 22.0 ±8.3 78.0 ±4.3, 5.1 ±2.2, 95.1 ±2.1, 11.0 ±4.4

All 10.9 ±1.6 4.2 ±2.8, 5.9 ±3.4, 21.7 ±8 78.4 ±8, 5.0v2.2, 95.0 ±2.2, 10.8 ±4

Table 1. Accumulated prediction results for training, test, entire data set union with statistical

features of the model ensemble trained in parallel (using different data sub-sets and random ini-

tialisation). All errors with 2σ standard deviation interval, and N=9000 samples, n=3000 for each

class, and using CNN architecture A.

CNN Architecture Parameters Forward Time Backward Time

A (8/16) 122587 18 ms1, 0.5 ms2 26 ms1, 1 ms2

B (4/8) 66639 8 ms1 10 ms1

C (8/8) 104603 12 ms1 18 ms1

D (4/4) 58047 6 ms1 8 ms1

Table 2. Forward and backward (training) times for one 64 × 64 × 3 segment and different CNN

architectures (see Fig. 3) using the JavaScript ConvNet.js classifier1 and TensorFlow (CPU)2

CNN Total Error % Accu Prec Recall Spec f1

A (8/16) 11.8 0.909 0.935 0.866 0.947 0.899

B (4/8) 11.8 0.909 0.935 0.866 0.947 0.899

C (8/8) 11.7 0.909 0.936 0.864 0.948 0.899

D (4/4) 12.7 0.900 0.924 0.856 0.938 0.889

Table 3. Statistical measures for the different CNN model architectures

Eng. Proc. 2022, 4, x FOR PEER REVIEW 10 of 4

Figure 7. Example results (from TensorFlow model) of a four-class predictor with an additional

"unknown" class U (a) 64 × 64 pixel segment size (b) 32 × 32 pixel segment size

Increase in accuracy after some image pre‐processing techniques (Gaussian blur, ro-

tation) is small and would be around 1‐2%. One major question is the explainability of the

CNN classifier and which features of the input image segments are amplified. A first

guess was the colour information contained in the image segments, i.e., background is

mostly blue or black, coverage is mostly white or grey. Therefore, a simple RGB‐pixel

classifier was applied to each image pixel using a simple fully connected ANN, finally

applying the same post-processing algorithms. The result showed an average true‐posi-

tive classification accuracy of about 60%, which is above guess likelihood (33%), and there-

fore the colour feature is still strongly correlated to the classification target label.

Comparing both software frameworks (optimized native code versa virtual machine

processing with JavaScript), the overall classification results are similar, the overall seg-

ment classification accuracy is about 90%. The computational time of ConvNet.js is about

50 times higher than the CPU-based TensorFlow software. Because the CNN complexity

is low (less than 100000 parameters distributed over 6 layers), data-path parallelization

using Single-Instruction Multiple-Data architectures and GGPU co-processors pose no

significant speed-up. Control-path parallelization can be utilised during training of the

model ensemble (maximal speed-up M with M models), and during inference (maximal

speed-up is S with S as the number of segments per image).

Model (Input size)
Raspberry Pi-3/4

(TF-Lite)

Raspberry Pi-3/4 Intel Neu-

ral Stick 2

Raspberry Pi-3/4 Google

Coral USB

Jetson

Nano

Google

Coral

EfficientNet-B0

(224x224)
14.6-25.8 FPS 95-180 FPS 105-200 FPS 216 FPS 200 FPS

ResNet-50 (244x244) 2.4-4.3 FPS 16-60 FPS 10-18.8 FPS 36 FPS 18.8 FPS

MobileNet-v2

(300x300)
8.5-15.3 FPS 30 FPS(Pi-3) 46 FPS(Pi-3) 64 FPS 130 FPS

SSD Mobilenet-V2

(300x300)
7.3-13 FPS 11-41 FPS 17-55 FPS 39 FPS 48 FPS

Table 4. TensorFlow performance using widely used image classification networks processed on

different hardware in image frames per second (FPS) Source: [7]

There are different choices for accelerated co-processors, but some of them are lim-

ited to TensorFlow only (proprietary interface). The Intel Neural Stick and the Google

Coral accelerator are USB dongles with a special TPU chip performing all tensor calcula-

tions. The Google Coral works with special pre-compiled TensorFlow Lite networks. The

Eng. Proc. 2022, 4, x FOR PEER REVIEW 11 of 4

Jetson Nano is the only single-board computer with floating-point GPU acceleration. It

supports most models because all frameworks such as TensorFlow, Caffe, PyTorch,

YOLO, MXNet, and others use the CUDA GPU support library at a given time. The Rasp-

berry Pi computer can be used with some computational accelerators- Intel Neural Stick2,

Google coral USB accelerator. Google Coral development board has TPU(Tensor Pro-

cessing Unit) in itself. Jetson Nano has GPU on board. TensorFlow Lite is compatible with

all devices. Originally developed to work in smartphones and other small devices, Ten-

sorFlow Lite would never meet a CUDA GPU. Hence, it does not support CUDA or

cuDNN. So, Usage of TensorFlow Lite on Jetson Nano is purely based on CPU, not with

GPU. Jetson Nano can run TensorFlow models with GPU on board. But NVIDIA (Jetson

is from NVIDIA) provides TF-TRT on Jetson Nano. TensorFlow-TensorRT (TF-TRT) is an

integration of TensorFlow and TensorRT that leverages inference optimization on

NVIDIA GPUs within the TensorFlow ecosystem.

Tab. 4 shows a summary of TensorFlow performance using widely used image clas-

sification networks and processed on different hardware devices using accelerators.

6 Conclusion

Although the overall classification accuracy is about 90%, the high variance of the

segment prediction results across differently trained models (model ensemble all having

the same architecture) limits the output quality of the labelled ROI detector, typically re-

sulting in an underestimation of the classified regions and a lacking of generalisation. But

the presented static segment prediction with point clustering and iterative selective

bounding box approximation with final overlap conflict reduction is still reliable. Similar

to random forest trees, a multi-model prediction with model fusion (e.g., major coverage

estimation) is proposed to get the best matching bonding boxes for the relevant classes.

The reduction of the CNN complexity with respect to the number of filters and dy-

namic parameters does not lower the classification accuracy significantly. Although, CNN

are less suitable for low-resource embedded systems, the CNN architecture D (4/4) could

be implemented in an embedded camera systems, expecting overall ROI extraction times

for one image frame about 5 seconds, not suitable for real-time operation (maximal latency

100 ms). Using control-path parallelisation performing the image segment classifications

in parallel, the ROI extraction could be reduced to 1 second using generic multi-core

CPUs, or 100 ms using FPGA-based co-processors.

Founding: This work was founded by the Bremer Aufbau-Bank GmbH,

Förderkennzeichen FUE0648B, for the project "Maritime KI unterstützte Bildauswertung"

(MaritimKIB).

Author Contributions: All authors have read and agreed to the published version of the

manuscript. All authors contributed equally to this article.

Appendix A

Arch. Layer Filter Activation Output Parameter VecOps

A (16/16) Conv

Relu

Pool

Conv

Relu

Pool

Fc

Soft-

Max

[5×5]×8,s=1

-

[2×2]×8,s=2

[5×5]×16,s=1

-

[3×3]×16,s=3

-

-

-

relu

-

-

relu

-

relu

-

64×64×

64×64×8

32×32×8

32×32×16

32×32×16

10×10×16

1×1×3

3

608

32768

0

3216

16384

0

4803

3

Σ57782

4915200

32768

8192

6553600

16384

1600

9600

3

Σ11537347

Eng. Proc. 2022, 4, x FOR PEER REVIEW 12 of 4

Arch. Layer Filter Activation Output Parameter VecOps

B (8/8) Conv

Relu

Pool

Conv

Relu

Pool

Fc

Soft-

Max

[5×5]×4,s=1

-

[2×2]×4,s=2

[5×5]×8,s=1

-

[3×3]×8,s=3

-

-

-

relu

-

-

relu

-

relu

-

64×64×4

64×64×4

32×32×4

32×32×8

32×32×8

10×10×8

1×1×3

3

304

16384

0

808

8192

0

2403

3

Σ28094

2457600

16384

4096

1628400

8192

800

4800

3

Σ4127878

C (8/16) Conv

Relu

Pool

Conv

Relu

Pool

Fc

Soft-

Max

[5×5]×8,s=1

-

[2×2]×8,s=2

[5×5]×16,s=1

-

[3×3]×16,s=3

-

-

-

relu

-

-

relu

-

relu

-

64×64×8

64×64×8

32×32×8

32×32×8

32×32×8

10×10×8

1×1×3

3

608

32768

0

1608

8192

0

2403

3

Σ45582

4915200

32768

8192

3276800

8192

800

4800

3

Σ8246755

D (4/4) Conv

Relu

Pool

Conv

Relu

Pool

Fc

Soft-

Max

[5×5]×4,s=1

-

[2×2]×4,s=2

[5×5]×4,s=1

-

[3×3]×4,s=3

-

-

-

relu

-

-

relu

-

relu

-

64×64×4

64×64×4

32×32×4

32×32×4

32×32×4

10×10×4

1×1×3

3

304

16384

0

404

4096

0

1203

3

Σ22394

2457600

16384

4096

819200

4096

400

2400

3

Σ3304179

Table 5. Layer structure of and parameter count for four different CNN architectures used in this

work (s:stride, vecOps: Unit vector operations, input layer has output size 32×32×3)

References

1. S. Bosse, PSciLab: An Unified Distributed and Parallel Software Framework for Data Analysis, Simulation and Machine Learn-

ing—Design Practice, Software Architecture, and User Experience , Appl. Sci. 2022, 12(6), 2887; 10.3390/app12062887

2. S. Mittal; J.P. Srishti Srivastava, 2021. A Survey of Deep Learning Techniques for Underwater Image Classification. DOI:

10.13140/RG.2.2.25098.59846

3. C. Li, S. Anwar, SJ. Hou, R. Cong, C. Guo,, W. Ren,, (2021). Underwater image enhancement via medium transmission-guided

multi-color space embedding. IEEE Transactions on Image Processing, 30, 4985-5000.

4. D. Akkaynak, D, T. Treibitz, T., (2019). Sea-thru: A method for removing water from underwater images. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1682-1691)

5. Y. Xu,. H. Zhang, H. Wang, X. Liu, Underwater image classification using deep convolutional neural networks and data aug-

mentation, 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 2017, pp. 1-

5, doi: 10.1109/ICSPCC.2017.8242527.

6. B V. Deep, R. Dash. Underwater fish species recognition using deep learning techniques. In Intl. Conf. on Signal Processing and

Integrated Networks (SPIN), pages 665–669, 2019

7. https://qengineering.eu/deep-learning-with-raspberry-pi-and-alternatives.html, on-line, accessed 1.7.2022

https://qengineering.eu/deep-learning-with-raspberry-pi-and-alternatives.html

