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Abstract: Finding classified rectangular Regions of Interest (ROI) in underwater images is still a 

challenge, moreover if the images pose low quality with respect to illumination conditions, sharp-

ness, and noise. These ROIs can help to find relevant regions in the image quickly by humans, or 

they can be used as an input for automated structural health monitoring (SHM). This task itself 

should be done automatically, e.g., used for underwater inspection. Underwater inspection of tech-

nical structures, e.g., piles of sea mill energy harvester, typically aims to find material changes of 

the construction, e.g., rust or coverage with pocks, to make decisions about repair and to assess the 

operational safety. We propose and evaluate a hybrid approach with segmented classification using 

small-scaled CNN classifiers (with less than 20000 hyper parameters and 3M unity vector opera-

tions) and a reconstruction of labelled ROIs by using an iterative mean and expandable bounding 

box algorithm. The iterative bounding box algorithm combined with bounding box overlap check-

ing suppress spurious wrong segment classifications and represent the best and most accurate 

matching ROI for a specific classification label, e.g., surfaces with pocks coverage. The overall clas-

sification accuracy (true-positive classification) with respect to a single segments is about 70%, but 

with respect to the iteratively expanded ROI bounding boxes it is about 90%. 

Keywords: Image Classification; Region-of-interest detection; Underwater 

1. Introduction 

The underwater inspection of technical structures, e.g., construction parts of off-

shore wind turbines like piles, involves the identification of various parts in the under-

water images. In this work using given videos/pictures the following things can be in-

cluded: 

 

1. Background with water, bubbles, and fishes, summarized as feature class B; 

2. Technical structure, e.g., a mono pile of a wind turbine, summarized as feature class 

P; 

3. Formation of coverage with marine vegetation or organisms on the surface of the 

structure, summarized as feature class C. 

 

Currently, for the inspection of the mono pile, divers have to go under water. But 

even if humans inspect the underwater surfaces (underwater by the diver or remotely), 

the scenes are cluttered and the identification of surface coverage is a challenge. Auto-

mated visual inspection is desired to reduce maintenance and service times. 

Finding classified rectangular Regions of Interest (ROI) in underwater images is still 

a challenge. These ROIs can help to find relevant regions in the image quickly by humans, 

or they can be used as an input for automated structural health monitoring (SHM). This 

task itself should be done automatically, e.g., used for underwater inspection. Underwa-

ter inspection of technical structures, e.g., piles of sea mill energy harvester, typically aims 
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to find material changes of the construction, e.g., rust or coverage with pocks, to make 

decisions about repair and to assess the operational safety. 

The images taken from video recording during diving contain typical changing and 

highly dynamic underwater scenes consisting of ROIs related to the above introduced 

classes background (not relevant), technical construction surface, and modified surfaces 

(rust/coverage), with the highest relevance. 

The aim is the development of an automatic bounded region classifier that is at least 

able to distinguish between background, construction, and construction + coverage clas-

ses. The challenge is the low and varying image quality that typically appears in North- 

and East-sea underwater imaging. The images, typically recorded by a human diver or an 

AUV, pose low contrast, varying illumination conditions and colours, different viewing 

angles and spatial orientation and scale, overlaid by mud and bubbles (e.g., from the air 

supply), and optical focus issues.  

We propose and evaluate a hybrid approach with segmented classification using 

small-scaled CNN classifiers (with less than 10 layers and 100000 hyper parameters) and 

a reconstruction of labelled ROIs by using an iterative mean and expandable bounding 

box algorithm. The iterative bounding box algorithm combined with bounding box over-

lap checking suppress spurious wrong segment classifications and represent the best and 

most accurate matching ROI for a specific classification label, e.g., surfaces with pocks 

coverage. The overall classification accuracy (true-positive classification) with respect to 

a single segments is about 70%, but with respect to the iteratively expanded ROI bounding 

boxes it is about 90%. 

The image segment classification and ROI detection algorithms should be capable to 

be implemented on embedded systems, e.g., directly integrated in camera systems with 

application specific co-processor support. 

The aim is to achieve an accuracy of at least 85-90% for the predicted images, with a 

high degree of generalization and independence from various image and environmental 

parameters such as lighting conditions and background colouration, as well as relevant 

classification features. 

2  Related Work 

Overall, there is a lack of freely available image data sets from the underwater area, 

discussed by Chongyi Li et al. [3]. A possible image data set from the underwater area can 

be found in the Underwater Image Enhancement Benchmark (UIEB DS). These are not 

specifically technical components such as ship hulls. Further data sets for underwater im-

ages are, for example, the Fish4Knowlege data set (Fish4Knowledge DS) for the detection 

and acquisition of underwater targets; underwater images in the SUN data set for scene 

recognition and object detection (SUN DS); MARIS data set for Autonomous Marine Ro-

botics (MARIS DS); Sea-thru data set with 1100 underwater images with range maps; 

Haze-line data set with raw images, TIF files, camera calibration files and range maps [4]. 

Chongyi Li et al. however, criticize the listed data sets that they usually have monotonous 

content, limited scenes, few degradation features and, above all, lack of reference images. 

Also Mittal et al. criticize a non-existent large-scale dataset, which is why they use data 

augmentation, since it is impossible to train CNN with scarce data [2]. Another dataset 

can be found on ImageNet database, created by Yifeng Xu et al. [5]. The database 

ImageNet 2012 included 1000 classes with 15 million labelled high-resolution images 

(ImageNet DS). 

According to Mittal et al. [2] have CNNs already shown better predictive perfor-

mance than traditional image processing or machine learning methods. 

Luo et al. evaluate pre-processing, segmentation, and post processing for an accurate 

classification of 108 plankton classes. The authors use greyscale images, which are fraught 

with noise and unevenness in greyscale and contrast. In flat fielding, a calculated calibra-

tion frame is subtracted from the raw image. They use histogram normalization to nor-

malize the contrast in each image, which allows for better segmentation of ROIs. 
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Extremely noisy images, i.e. those with a signal-to-noise (SNR) below 25, are sorted out. 

Then use the K-harmonic mean clustering to detect and segment the ROIs. 

Deep et al. [6] propose a CNN model and two CNN+shallow models for the classifi-

cation of living fish species. In their dataset, most of the images are noise-free but out of 

focus. Therefore, the images are first preprocessed with an image sharpening method to 

improve the edges in the images. They are using a slightly modified Laplacian kernel, 

where the sum of all kernel elements is one instead of zero. This kernel produces a colour 

image, while the original Laplacian kernel produces a binary image. 

3  Image Sets 

The images set consists of different underwater images with a high variance in illu-

mination conditions, spatial orientation, noise (bubbles, blurring), and colour palettes. 

The images are snapshots taken from videos recorded by a human diver. The images are 

used for supervised ML requiring explicit labelling. The labelling is done by hand by in-

teractive drawing of labelled closed polygon paths assigning regions of the images to a 

specific class. There are areas remaining with no / unknown labelling. 

4  Methods and Architecture 

In addition to the evaluation of suitable algorithms and classification models, this 

work compares two different software frameworks: 

 

1. Native software code using widely deployed TensorFlow-Keras with GPU support 

[7]; 

2. Pure JavaScript code using PSciLab with WokBooks and Workshells [1] (processed by 

a Web browser and node.js), using a customized version of the ConvNet.js trainer for 

CNNs. 

 

The second framework stored all data in SQL data bases as well as trained models 

(JSON format). The SQL data bases (SQLite3) can be accessed remotely via a SQLjson Re-

mote Procedure Call (RPC) interface. The TensorFlow framework used the local filesys-

tem for data storage. Any computer processing TensorFlow needed a copy of the entire 

data sets. 

Both software frameworks used the same input data and functionally and structural 

equivalent CNN architectures. 

 

 

Figure 1. Overview of the data flow architecture and the used algorithms  
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Figure 2. Web browser-based software architecture with remote worker processes [1]  

4.1  Image Segmentation 

On the first processing level the input images will be segmented in equally sized sub-

images, e.g., RGB segments of 64 × 64 pixels. Each image segment is related to one of the 

classes σ ∈ {B,P,C} or unknown (U). A conventional CNN with two convolutional layers 

is used to predict the class σ ∈ {B,P,C} for each single image segment. The CNN is trained 

with a sub-set of randomly chosen labelled image segments. 

4.2  Convolutional Neural Network Architecture 

Four different CNN architectures and parameter settings were evaluated, summa-

rized in Tab. 5 (Appendix A), assuming a segment input site data volumes with 64 × 64 × 

3 (RGB) elements (derived from the RGB video images). There are two convolutional lay-

ers in all architectures, and the hyper parameter number ranges from 20k to 60k. Both 

software frameworks used the same CNN architecture and configuration. The smallest 

CNN model compared with the largest requires about 1/4 of the unit vector operations 

and about 1/3 of the hyper parameters that must be trained. 

4.3  Image ROI Classification 

The basic algorithm and workflow for automated ROI classification: 

 

1. Segmentation of each input image with static size segments; 

2. Parallel prediction of the image segment class by the CNN; 

3. Creation of a class prediction matrix C^ with rows and columns representing the spa-

tial distribution of the image segments in the original input image; the matrix M is 

considered as a point cloud with cartesian point coordinates related to the matrix 

〈row,column〉 tuple; 

4. Computation of spatial class element clusters using the DBSCAN algorithm; parame-

ters 6epsilon; and minPoints must be chosen carefully (e.g., ε=2, minPoints=5); 

5. Applying a Mean Bounding Box (MBB) algorithm to the point elements of each cluster 

computing the mass-centred average bounding box (typically under-sized with re-

spect to the representative points in the clusters); 

6. Applying an MBB extension iteratively to grow the bounding box but still suppress-

ing spurious (wrong) image segments; 

7. Remove small(er) bonding boxes covered by larger bounding boxes (either with dif-

ferent or same class) or shrink overlapping bounding boxes of different classes by 

priority decision (shrink less important regions); 

8. Mark the original input image with ROI rectangles computed from the previous step; 
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Iteratively expanded bounding boxes from different classes can overlap, which is an 

undesired result. To reduce overlapping conflicts, a class priority is introduced. In this 

work, coverage on construction surfaces has the highest priority to be detected accurately. 

After the ROI expansion is done, overlapping bounding boxes with lower priority are 

shrink until all overlap conflicts are resolved. 

4.4  Training and Labelling 

For training, a selected and representative sub-set of images (246 images) are ex-

tracted from the diving video. Each image is labelled manually by adding relevant and 

strong ROI polygons to each image. Based on the labelled and closed polygon paths, each 

image is segmented with a static segment size. All segments from an image are stored in 

a SQL database table. With respect to a given image size of 1920 × 1080 pixels, a chosen 

segment size of 64 × 64 pixels, there are about 120000 small labelled image segments. Seg-

ment images not covered by any of the labelled polygon paths are automatically marked 

with the class "Unknown". Only strong and clearly classifiable regions are created, shown 

in Fig. 4. Remaining unlabelled regions will not be considered for the training process. 

The training process selects randomly a balanced sub-set of the image segments (e.g., 

1000) with respect to the class label distribution, i.e., providing a normal distribution of 

the class labels among the training and validation data set. Multiple models are trained in 

parallel. Each model is trained with a different set of segments and with random initiali-

sation of the model parameters using Monte Carlo simulation. 

The TensorFlow framework used an Adam optimizer with a very low learning rate 

of 0.001. The ConvNetJS CNN framework used an adaptive gradient optimizer with a 

moderate learning rate of 0.1 and a high momentum of 0.9. Each convolution layer had an 

l2 regularization loss with l2=0.01 in TensorFlow framework and l2=0.001 in the Con-

vNetJS framework. 

 

Figure 4. Example of the manual labelling of polygon path bounded regions (Top, Left) Original 

image (Top, Right) With labelled polygon regions (Bottom) Segmented images  
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4.5  Mean Bounding Box Algorithm 

In this section the Mean Bounding Box (MBB) algorithm is introduced. There is a set 

of class symbols Σ and a class matrix M^ consisting of elements labelling an image segment 

with a class, so that: 
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The matrix M^ is flattened to a point cloud list set P={pσ}σ∈Σ. Each class set p contains 

the matrix positions of the respective elements, i.e., pσ={ 〈i,j〉}, with all points classified by 

the CNN to the same label class σ∈Σ. 

The DBSCAN clustering will return a group list of points that satisfy the clustering 

conditions, one point group list for each label class, as shown in Fig. 5 (a). 
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It is assumed that a cluster will contain a majority of correctly classified points (seg-

ments), and a minority of scattered wrong classified points. 

 

Figure 5. Iterative bounding box expansion with final conflict overlapping shrinking  

The MBB algorithm computes points 〈x1,y1,x2,y2〉 of a bounding box that is centred at 

the mass-of-centre point c of all points of a cluster and with outer sides given by the vec-

torial mean centred position of all points above or below, and left or right form the c point, 

as shown in Alg. 1 and in Fig. 5 (b).  

 
 1: function massOfCenter(points)  

 2:   pc = { x=0, y=0 } 

 3:   ∀p ∈ points do 
 4:     pc.x := pc.x+p.x, pc.y := pc.y+p.y 

 5:   done 

 6:   pc := pc / |points| 

 7:   return pc 

 8: end 

 9: function meanBBox(points)  

10:   pc = massOfCenter(points) 

11:   // Initial bbox around mass-of-centre point 



Eng. Proc. 2022, 4, x FOR PEER REVIEW 7 of 4 
 

 

12:   b = { x1=pc.x, y1=pc.y, x2=pc.x, y2=pc.y } 

13:   c = { x1=1, y1=1, x2=1, y2=1 } 

14:   ∀p ∈ points do 
15:     // each point extends the bbox 

16:     if p.x>pc.x then incr(c.x2), b.x2 := b.x2+p.x 

17:     if p.x<pc.x then incr(c.x1), b.x1 := b.x1+p.x 

18:     if p.y>pc.y then incr(c.y2), b.y2 := b.y2+p.y 

19:     if p.y<pc.y then incr(c.y1), b.y1 := b.y1+p.y     

20:   done 

21:   // normalize bbox coordinates 

22:   b.x1 := b.x1 / c.x1, b.x2 := b.x2 / c.x2 

23:   b.y1 := b.y1 / c.y1, b.y2 := b.y2 / c.y2 

24:   return b 

25: end 

Algorithm 1. Mean Bounding Box Algorithm applied to a two-dimensional point cloud  

The expansion of a previously computed bounding box is done by all points outside 

of the current bounding box, performing the next extension iteration. Again, a spatial po-

sition averaging is performed, extending the boundary of the bound box, shown in Alg. 

2. The expansion is performed iteratively. Each step includes more points, but increases 

the probability that the bound box is over-sized with respect to spurious outlier points 

that result from wrong CNN classifications. 

 
 1: function meanBBoxExpand(points,b)  

 2:   pc = massOfCenter(points) 

 3:   // start with the old bbox 

 4:   b2 = { x1=b.x, y1=b.y, x2=b.x, y2=b.y } 

 5:   c = { x1=1, y1=1, x2=1, y2=1 } 

 6:   ∀p ∈ points do 
 7:     // each point outside the old bbox extends the new bbox 

 8:     if p.x>b.x then incr(c.x2), b2.x2 := b2.x2+p.x 

 9:     if p.x<b.x then incr(c.x1), b2.x1 := b2.x1+p.x 

10:     if p.y>b.y then incr(c.y2), b2.y2 := b2.y2+p.y 

11:     if p.y<b.y then incr(c.y1), b2.y1 := b2.y1+p.y     

12:   done 

13:   // normalize bbox coordinates 

14:   b2.x1 := b2.x1 / c.x1, b2.x2 := b2.x2 / c.x2 

15:   b2.y1 := b2.y1 / c.y1, b2.y2 := b2.y2 / c.y2 

16:   return b2 

17: end 

Algorithm 2. Mean Bounding Box expansion applied to a two-dimensional point cloud and mean 

bound box  

In case of high iteration loop values, bounding boxes from different classes can over-

lap. To reduce overlapping conflicts, a class priority is introduced layering the class re-

gions by relevance. After the ROI expansion is done, overlapping bounding boxes with 

lower priority are shrink until all overlap conflicts are resolved. Commonly, more than 

one side of the bounding box can be shrunken to reduce the overlap conflict. The possible 

candidates are evaluated and sorted with respect to the amount of shrinkage at each side. 

The lowest shrinkage is applied first. If the conflict is not reduced by the selected side 

shrinking, the next side is shrink until the conflict (with one or more higher priority 

bounding boxes) is reduced, as shown in Fig. 5 (c). 

5  Results 

The original numeric loss computed from the softmax layer and returned by the 

trainer is not a measure for the discrete prediction accuracy, i.e., the number of correct and 
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incorrect predicted segment classes, which are achieved after binarization and maximum 

best-of selection. This is an indicator for a low separation margin in the target feature 

space. There is no significant difference in the accuracy, recall, and precision in the train-

ing and test data set, shown in Tab. 1. Examples of classified bounding boxes are shown 

in Fig. 6. Because only the C class (coverage of construction surface) is of high relevance 

(the highest priority), only the particular classification percentages for this class are shown 

in the last column in Tab. 1. The average prediction error for all classes is about 10% with 

low variance across different models trained with different sub-sets from the entire data 

space and each with different random initialisation. The average error for specific classes 

differ significantly. The relevant class C shows a prediction error (¬ C) about 20% with 

respect to samples and a high variance across different models. Splitting the prediction 

accuracy in the tuple true positive (C), false positive (¬ C), true negative (¬ C), and false 

negative (C), the average TP prediction accuracy is about 80%. 

We get the following average statistical measures for the class prediction of single 

image segments: 
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Prediction results for training and test data do not differ significantly and show sim-

ilar high statistical measures, which is an indicator for a representative training data sub-

set and a sufficiently generalised predictor model. 

Considering the bounding box estimator post-processing, the FP rate of the priority 

class C is nearly zero. The average coverage of the predicted and estimated C area is about 

50%, showing an underestimation. The TP rate of class C regions is about 70%. 

Finally, the different CNN architectures are compared with respect to classification 

accuracy in Tab. 3. There is no significant degradation of the classification accuracy ob-

served. 

In addition to a three-class predictor, a four-class predictor was evaluated, too. An 

arbitrary unknown class U was added to the class set (i.e., a void class covering "all other" 

cases). There were no significant improvement in prediction accuracy of the classes B/P/C 

observed. A confusion matrix plot of a image segment classification example is shown in 

Fig. 7. Reducing the image segment size by a factor 2 increase classification errors signifi-

cantly, suggesting the 64 × 64 segment size as an lower limit.  
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Figure 6. Classified bounding boxes for one image using four models trained in parallel (same 

parameters) but with different random initialisation and training data sub-set (Blue: class back-

ground, red: class coverage, green: class free construction surface)  

 

Data Set  Total error (¬TPC) %  Error (¬TPC)/class %  Prediction accuracy/Class C (TP,FP,TN,FN) %  

Training  10.6 ±1.5  5.0 ±3.4,6.0 ±2.8,21.0 ±7.1  79.0 ±7, 4.8 ±2, 94.7 ±6.6, 10.5 ±3.1  

Test  11.1 ±1.8  5.8 ±2.6, 5.8 ±3.2, 22.0 ±8.3  78.0 ±4.3, 5.1 ±2.2, 95.1 ±2.1, 11.0 ±4.4  

All  10.9 ±1.6  4.2 ±2.8, 5.9 ±3.4, 21.7 ±8  78.4 ±8, 5.0v2.2, 95.0 ±2.2, 10.8 ±4  

Table 1. Accumulated prediction results for training, test, entire data set union with statistical 

features of the model ensemble trained in parallel (using different data sub-sets and random ini-

tialisation). All errors with 2σ standard deviation interval, and N=9000 samples, n=3000 for each 

class, and using CNN architecture A.  

 

 

CNN Architecture  Parameters  Forward Time  Backward Time  

A (8/16)  122587  18 ms1, 0.5 ms2  26 ms1, 1 ms2  

B (4/8)  66639  8 ms1  10 ms1  

C (8/8)  104603  12 ms1  18 ms1  

D (4/4)  58047  6 ms1  8 ms1  

Table 2. Forward and backward (training) times for one 64 × 64 × 3 segment and different CNN 

architectures (see Fig. 3) using the JavaScript ConvNet.js classifier1 and TensorFlow (CPU)2  

 

CNN  Total Error %  Accu  Prec  Recall  Spec  f1  

A (8/16)  11.8  0.909  0.935  0.866  0.947  0.899  

B (4/8)  11.8  0.909  0.935  0.866  0.947  0.899  

C (8/8)  11.7  0.909  0.936  0.864  0.948  0.899  

D (4/4)  12.7  0.900  0.924  0.856  0.938  0.889  

Table 3. Statistical measures for the different CNN model architectures  
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Figure 7. Example results (from TensorFlow model) of a four-class predictor with an additional 

"unknown" class U (a) 64 × 64 pixel segment size (b) 32 × 32 pixel segment size  

Increase in accuracy after some image pre‐processing techniques (Gaussian blur, ro-

tation) is small and would be around 1‐2%. One major question is the explainability of the 

CNN classifier and which features of the input image segments are amplified. A first 

guess was the colour information contained in the image segments, i.e., background is 

mostly blue or black, coverage is mostly white or grey. Therefore, a simple RGB‐pixel 

classifier was applied to each image pixel using a simple fully connected ANN, finally 

applying the same post-processing algorithms. The result showed an average true‐posi-

tive classification accuracy of about 60%, which is above guess likelihood (33%), and there-

fore the colour feature is still strongly correlated to the classification target label.  

Comparing both software frameworks (optimized native code versa virtual machine 

processing with JavaScript), the overall classification results are similar, the overall seg-

ment classification accuracy is about 90%. The computational time of ConvNet.js is about 

50 times higher than the CPU-based TensorFlow software. Because the CNN complexity 

is low (less than 100000 parameters distributed over 6 layers), data-path parallelization 

using Single-Instruction Multiple-Data architectures and GGPU co-processors pose no 

significant speed-up. Control-path parallelization can be utilised during training of the 

model ensemble (maximal speed-up M with M models), and during inference (maximal 

speed-up is S with S as the number of segments per image). 

 

Model (Input size)  
Raspberry Pi-3/4 

(TF-Lite)  

Raspberry Pi-3/4 Intel Neu-

ral Stick 2  

Raspberry Pi-3/4 Google 

Coral USB  

Jetson 

Nano  

Google 

Coral  

EfficientNet-B0 

(224x224)  
14.6-25.8 FPS  95-180 FPS  105-200 FPS  216 FPS  200 FPS  

ResNet-50 (244x244)  2.4-4.3 FPS  16-60 FPS  10-18.8 FPS  36 FPS  18.8 FPS  

MobileNet-v2 

(300x300)  
8.5-15.3 FPS  30 FPS(Pi-3)  46 FPS(Pi-3)  64 FPS  130 FPS  

SSD Mobilenet-V2 

(300x300)  
7.3-13 FPS  11-41 FPS  17-55 FPS  39 FPS  48 FPS  

Table 4. TensorFlow performance using widely used image classification networks processed on 

different hardware in image frames per second (FPS) Source: [7]  

There are different choices for accelerated co-processors, but some of them are lim-

ited to TensorFlow only (proprietary interface). The Intel Neural Stick and the Google 

Coral accelerator are USB dongles with a special TPU chip performing all tensor calcula-

tions. The Google Coral works with special pre-compiled TensorFlow Lite networks. The 
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Jetson Nano is the only single-board computer with floating-point GPU acceleration. It 

supports most models because all frameworks such as TensorFlow, Caffe, PyTorch, 

YOLO, MXNet, and others use the CUDA GPU support library at a given time. The Rasp-

berry Pi computer can be used with some computational accelerators- Intel Neural Stick2, 

Google coral USB accelerator. Google Coral development board has TPU(Tensor Pro-

cessing Unit) in itself. Jetson Nano has GPU on board. TensorFlow Lite is compatible with 

all devices. Originally developed to work in smartphones and other small devices, Ten-

sorFlow Lite would never meet a CUDA GPU. Hence, it does not support CUDA or 

cuDNN. So, Usage of TensorFlow Lite on Jetson Nano is purely based on CPU, not with 

GPU. Jetson Nano can run TensorFlow models with GPU on board. But NVIDIA (Jetson 

is from NVIDIA) provides TF-TRT on Jetson Nano. TensorFlow-TensorRT (TF-TRT) is an 

integration of TensorFlow and TensorRT that leverages inference optimization on 

NVIDIA GPUs within the TensorFlow ecosystem. 

Tab. 4 shows a summary of TensorFlow performance using widely used image clas-

sification networks and processed on different hardware devices using accelerators. 

6  Conclusion 

Although the overall classification accuracy is about 90%, the high variance of the 

segment prediction results across differently trained models (model ensemble all having 

the same architecture) limits the output quality of the labelled ROI detector, typically re-

sulting in an underestimation of the classified regions and a lacking of generalisation. But 

the presented static segment prediction with point clustering and iterative selective 

bounding box approximation with final overlap conflict reduction is still reliable. Similar 

to random forest trees, a multi-model prediction with model fusion (e.g., major coverage 

estimation) is proposed to get the best matching bonding boxes for the relevant classes.  

The reduction of the CNN complexity with respect to the number of filters and dy-

namic parameters does not lower the classification accuracy significantly. Although, CNN 

are less suitable for low-resource embedded systems, the CNN architecture D (4/4) could 

be implemented in an embedded camera systems, expecting overall ROI extraction times 

for one image frame about 5 seconds, not suitable for real-time operation (maximal latency 

100 ms). Using control-path parallelisation performing the image segment classifications 

in parallel, the ROI extraction could be reduced to 1 second using generic multi-core 

CPUs, or 100 ms using FPGA-based co-processors.  
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Appendix A 

 

Arch.  Layer  Filter  Activation  Output  Parameter  VecOps  

A (16/16)  Conv 

Relu 

Pool 

Conv 

Relu 

Pool 

Fc 

Soft-

Max  

[5×5]×8,s=1 

- 

[2×2]×8,s=2 

[5×5]×16,s=1 

- 

[3×3]×16,s=3 

- 

-  

- 

relu 

- 

- 

relu 

- 

relu 

-  

64×64× 

64×64×8 

32×32×8 

32×32×16 

32×32×16 

10×10×16 

1×1×3 

3  

608 

32768 

0 

3216 

16384 

0 

4803 

3 

Σ57782  

4915200 

32768 

8192 

6553600 

16384 

1600 

9600 

3 

Σ11537347  
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Arch.  Layer  Filter  Activation  Output  Parameter  VecOps  

B (8/8)  Conv 

Relu 

Pool 

Conv 

Relu 

Pool 

Fc 

Soft-

Max 

[5×5]×4,s=1 

- 

[2×2]×4,s=2 

[5×5]×8,s=1 

- 

[3×3]×8,s=3 

- 

-  

- 

relu 

- 

- 

relu 

- 

relu 

- 

64×64×4 

64×64×4 

32×32×4 

32×32×8 

32×32×8 

10×10×8 

1×1×3 

3  

304 

16384 

0 

808 

8192 

0 

2403 

3 

Σ28094  

2457600 

16384 

4096 

1628400 

8192 

800 

4800 

3 

Σ4127878  

C (8/16)  Conv 

Relu 

Pool 

Conv 

Relu 

Pool 

Fc 

Soft-

Max 

[5×5]×8,s=1 

- 

[2×2]×8,s=2 

[5×5]×16,s=1 

- 

[3×3]×16,s=3 

- 

-  

- 

relu 

- 

- 

relu 

- 

relu 

- 

64×64×8 

64×64×8 

32×32×8 

32×32×8 

32×32×8 

10×10×8 

1×1×3 

3  

608 

32768 

0 

1608 

8192 

0 

2403 

3 

Σ45582  

4915200 

32768 

8192 

3276800 

8192 

800 

4800 

3 

Σ8246755  

D (4/4)  Conv 

Relu 

Pool 

Conv 

Relu 

Pool 

Fc 

Soft-

Max 

[5×5]×4,s=1 

-  

[2×2]×4,s=2 

[5×5]×4,s=1 

-  

[3×3]×4,s=3 

- 

-  

- 

relu 

- 

- 

relu 

- 

relu 

- 

64×64×4 

64×64×4 

32×32×4 

32×32×4 

32×32×4 

10×10×4 

1×1×3 

3  

304 

16384 

0 

404 

4096 

0 

1203 

3 

Σ22394  

2457600 

16384 

4096 

819200 

4096 

400 

2400 

3 

Σ3304179  

Table 5. Layer structure of and parameter count for four different CNN architectures used in this 

work (s:stride, vecOps: Unit vector operations, input layer has output size 32×32×3)  
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