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Overview

 Let's talk about self-adaptive and intelligent technical systems applied to

sensor data.
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Overview

 Let's talk about self-adaptive and intelligent technical systems applied to

sensor data.

 Object and Region-of-Interest detection in underwater images is a challenge,

even for humans and experts!

 Domain-specific Automated Region-of-Interest detection is addressed in this

work.
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Challenges

Underwater images pose low quality with respect to illumination conditions,

sharpness, and noise.

Finding ROIs automatically can help to identify relevant regions in the image

quickly by humans, or they can be used as an input for automated inspection and

structural health monitoring (SHM).



Underwater inspection of technical structures, e.g., piles of sea mill energy

harvester, typically aims to find material changes of the construction, e.g., rust

or coverage with pocks, to make decisions about repair and to assess the

operational safety.
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Challenges

Currently, for the inspection of piles of sea windmill energy harvester, divers have to

go under water.

But even if humans inspect the underwater surfaces (underwater by the diver or

remotely), the scenes are cluttered and the identification of surface coverage is a

challenge.

Automated visual inspection is desired to reduce maintenance and service times.
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Goals


The image segment classification and ROI detection algorithms should be

capable to be implemented on embedded systems, e.g., directly integrated in

camera systems with application specific co-processor support.
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Goals


The image segment classification and ROI detection algorithms should be

capable to be implemented on embedded systems, e.g., directly integrated in

camera systems with application specific co-processor support.



The aim is to achieve an accuracy of at least 85-90% for the predicted images,

with a high degree of generalization and independence from various image and

environmental parameters such as lighting conditions and background

colouration, as well as relevant classification features.
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Summary and Highlights

We propose and evaluate a hybrid approach with segmented classification using

small-scaled CNN classifiers (with less than 20000 hyper parameters and less than 3

Million unity vector operations)

A reconstruction of labelled ROIs is provided by using an iterative mean and

expandable bounding box algorithm.

The iterative bounding box algorithm combined with bounding box overlap

checking suppress spurious wrong segment classifications and represent the best

and most accurate matching ROI for a specific classification label, e.g., surfaces

with pocks coverage.


The overall classification accuracy (true-positive classification) with respect to

a single segments is about 70%, but with respect to the iteratively expanded

ROI bounding boxes it is about 90%.
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Images and Classes

The underwater inspection of technical structures, e.g., construction parts of off-shore

wind turbines like piles, involves the identification of various parts in the underwater

images:

1. Background with water, bubbles, and fishes, summarized as feature class B;

2. Technical structure, e.g., a mono pile of a wind turbine, summarized as feature class

P;

3. Formation of coverage with marine vegetation or organisms on the surface of the

structure, summarized as feature class C.
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Images and Classes

The images set consists of different RGB underwater images posing a

high variance in illumination conditions,

spatial orientation,

noise (bubbles, blurring), and

colour palettes.

The images are snapshots taken from videos recorded by a human diver with an

underwater camera.
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Methods and Architecture
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Methods

1. Manual image labelling with labelled polygon regions

2. Segmentation of raw input images in smaller segment images (segment size n × m

pixels, e.g., 64 × 64)

3. Convolutional Neural Networks (CNN)

Input: Image Segment

Output: Class probabilities (B, P, C) and maximum likelihood selection of best

candidate (or none)

4. Iterative rectangular bounding box approximation using density-based clustering

(DBSCAN) and centre-of-mass (COM) computations; COM determines the centre

of the bounding box.

Input: All labelled segments of input images

Output: Set of labelled ROI coordinates

5. Post correction of overlapping conflicting labelled ROIs
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Architecture

Fig. 1. Overview of the data flow architecture and the used algorithms
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Software

Fig. 2. Web browser-based software architecture with remote shell worker processes (Bosse, Appl. Sciences,

2022)
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CNN Parameters

Four different CNN model architectures were evaluetd:

Arch. Layer Filter Activation Output Parameter VecOps

A (8/16) Conv 

Relu 

Pool 

Conv 

Relu 

Pool 

Fc

SoftMax

[5×5]×8,s=1 

- 

[2×2]×8,s=2 

[5×5]×16,s=1 

- 

[3×3]×16,s=3 

- 

-

- 

relu 

- 

- 

relu 

- 

relu 

-

64×64×8 

64×64×8 

32×32×8 

32×32×16 

32×32×16 

10×10×16 

1×1×3 

3

608

32768

0

3216

16384

0

4803

3

Σ57782

4915200

32768

8192

6553600

16384

1600

9600

3

Σ11537347

B (4/8) Conv 

Relu 

Pool 

Conv 

Relu 

Pool 

Fc

SoftMax

[5×5]×4,s=1 

- 

[2×2]×4,s=2 

[5×5]×8,s=1 

- 

[3×3]×8,s=3 

- 

-

- 

relu 

- 

- 

relu 

- 

relu 

-

64×64×4 

64×64×4 

32×32×4 

32×32×8 

32×32×8 

10×10×8 

1×1×3 

3

304

16384

0

808

8192

0

2403

3

Σ28094

2457600

16384

4096

1628400

8192

800

4800

3

Σ4127878
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CNN Parameters

Arch. Layer Filter Activation Output Parameter VecOps

C (8/8) Conv 

Relu 

Pool 

Conv 

Relu 

Pool 

Fc

SoftMax

[5×5]×8,s=1 

- 

[2×2]×8,s=2 

[5×5]×8,s=1 

- 

[3×3]×16,s=3 

- 

-

-- 

relu 

- 

- 

relu 

- 

relu 

-

64×64×8 

64×64×8 

32×32×8 

32×32×8 

32×32×8 

10×10×8 

1×1×3 

3

608

32768

0

1608

8192

0

2403

3

Σ45582

4915200

32768

8192

3276800

8192

800

4800

3

Σ8246755

D (4/4) Conv 

Relu 

Pool 

Conv 

Relu 

Pool 

Fc

SoftMax

[5×5]×4,s=1 

- 

[2×2]×4,s=2 

[5×5]×4,s=1 

- 

[3×3]×4,s=3 

- 

-

- 

relu 

- 

- 

relu 

- 

relu 

-

64×64×4 

64×64×4 

32×32×4 

32×32×4 

32×32×4 

10×10×4 

1×1×3 

3

304

16384

0

404

4096

0

1203

3

Σ22394

2457600

16384

4096

819200

4096

400

2400

3

Σ3304179
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Mean Bounding Box Algorithm (MBB)

There is a set of class symbols Σ and a class matrix M consisting of elements

labelling an image segment with a class, so that:

Σ = {B, P , C, U}

σ ∈ Σ

M̂ =

⎛
⎜ ⎜ ⎜ ⎜
⎝

σ1,1 . . σ1,j

σ2,1 . . σ2,j

. . . . . .

σi,1 . . σi,j

⎞
⎟ ⎟ ⎟ ⎟
⎠

The matrix M is flattened to a point cloud list set P={pσ}σ∈Σ .

Each class set p contains the matrix positions of the respective elements, i.e., pσ={

⟨i,j⟩}, with all points classified by the CNN to the same label class σ∈Σ.
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Mean Bounding Box Algorithm (MBB)

The DBSCAN clustering will return a group list of points that satisfy the clustering

conditions, one point group list for each label class:

DBSCAN : P → {{pj}j
, {pk}

k
, {pl}l

, . .}, j ≠ k ≠ l

P : {pi}i, i = {1, 2, 3, . . , n}

pi =< i, j >∈ R2

It is assumed that a cluster will contain a majority of correctly classified points

(segments), and a minority of scattered wrong classified points.
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Mean Bounding Box Algorithm (MBB)

Fig. 3. Iterative bounding box expansion with final conflict overlapping shrinking
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Mean Bounding Box Algorithm (MBB)

The MBB algorithm computes points ⟨x1 ,y1 ,x2 ,y2⟩ of a bounding box that is

centred at the mass-of-centre point c of all points of a cluster and with outer sides

given by the vectorial mean centred position of all points above or below, and left or

right form the c point.

The expansion of a previously computed bounding box is done by all points outside

of the current bounding box, performing the next extension iteration.

Again, a spatial position averaging is performed, extending the boundary of the

bound box.

The expansion is performed iteratively.

Each step includes more points, but increases the probability that the bound box

is over-sized with respect to spurious outlier points that result from wrong CNN

classifications.
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Mean Bounding Box Algorithm (MBB)

In case of high iteration loop values, bounding boxes from different classes can

overlap.

To reduce overlapping conflicts, a class priority is introduced layering the class

regions by relevance.

After the ROI expansion is done, overlapping bounding boxes with lower priority

are shrink until all overlap conflicts are resolved.

Commonly, more than one side of the bounding box can be shrunken to reduce

the overlap conflict.

The possible candidates are evaluated and sorted with respect to the amount of

shrinkage at each side.

The lowest shrinkage is applied first. If the conflict is not reduced by the

selected side shrinking, the next side is shrink until the conflict (with one or

more higher priority bounding boxes) is reduced.
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Experiments and Results

Training and test data: Randomly chosen sub-set of about 10000 image

segments taken from about 300 snap shot images
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Experiments and Results

Training and test data: Randomly chosen sub-set of about 10000 image

segments taken from about 300 snap shot images

Four different identical models were trained and applied in parallel (different

random initialisation and sub-set of images)
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Results

Fig. 4. Classified bounding boxes for one image using four models trained in parallel (same parameters) but

with different random initialisation and training data sub-set (Blue: class background, red: class coverage,

green: class free construction surface)
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Results

Data

Set

Total error (¬TPC)

%

Error (¬TP)/class (B,P,C)

%

Prediction accuracy/Class C

(TP,FP,TN,FN) %

Training 10.6±1.5 5.0±3.4 

6.0±2.8 

21.0±7.1

79.0±7 

4.8±2 

94.7±6.6 

10.5±3.1

Test 11.1±1.8 5.3±2.6 

5.8±3.2 

22.0±8.3

78.0±4.3 

5.1±2.2 

95.1±2.1 

11.0±4.4

All 10.9±1.6 4.2±2.8 

5.9±3.4 

21.7±8

78.4±8 

5.0±2.2 

95.0±2.2 

10.8±4

Tab. 1. Accumulated prediction results for training, test, entire data set union with statistical features of the

model ensemble trained in parallel (using different data sub-sets and random initialisation). All errors with 2σ

standard deviation interval, and N=9000 samples, n=3000 for each class, and using CNN architecture A.
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Results

CNN Architecture Parameters Forward Time Backward Time

A (8/16) 122587 18 ms
1
, 0.5 ms

2
26 ms

1
, 1 ms

2

B (4/8) 66639 8 ms
1

10 ms
1

C (8/8) 104603 12 ms
1

18 ms
1

D (4/4) 58047 6 ms
1

8 ms
1

Tab. 2. Forward and backward (training) times for one 64 × 64 × 3 segment and different CNN architectures

using the JavaScript ConvNet.js classifier
1
 and TensorFlow (CPU)

2
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Conclusion
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

Although the overall classification accuracy is about 90%, the high variance of

the segment prediction results across differently trained models (model

ensemble all having the same architecture) limits the output quality of the

labelled ROI detector, typically resulting in an underestimation of the

classified regions and a lacking of generalisation.
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

Although the overall classification accuracy is about 90%, the high variance of

the segment prediction results across differently trained models (model

ensemble all having the same architecture) limits the output quality of the

labelled ROI detector, typically resulting in an underestimation of the

classified regions and a lacking of generalisation.



But the presented static segment prediction with point clustering and iterative

selective bounding box approximation with final overlap conflict reduction is

still reliable. Similar to random forest trees, a multi-model prediction with

model fusion (e.g., major coverage estimation) is proposed to get the best

matching bonding boxes for the relevant classes.
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 The reduction of the CNN complexity with respect to the number of filters and

dynamic parameters does not lower the classification accuracy significantly.

Although, CNN are less suitable for low-resource embedded systems, the CNN

architecture D (4/4) could be implemented in an embedded camera systems,

expecting overall ROI extraction times for one image frame about 5 seconds, not

suitable for real-time operation (maximal latency 100 ms). Using control-path

parallelisation performing the image segment classifications in parallel, the ROI

extraction could be reduced to 1 second using generic multi-core CPUs, or 100 ms

using FPGA-based co-processors.
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