

The 8th International Electronic Conference on Medicinal Chemistry (ECMC 2022) 01–30 NOVEMBER 2022 | ONLINE

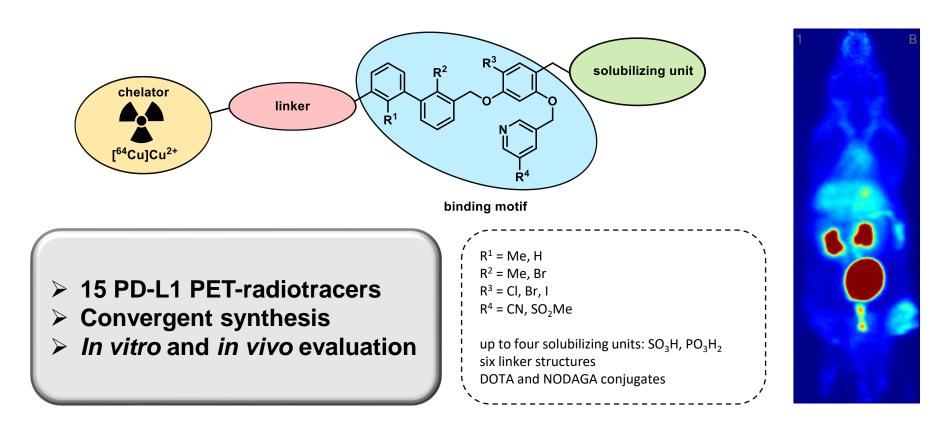
Small Molecule Radiotracers for PET Imaging of PD-L1 with Copper-64

Chaired by **DR. ALFREDO BERZAL-HERRANZ**; Co-Chaired by **PROF. DR. MARIA EMÍLIA SOUSA**

1

Fabian Krutzek¹, Cornelius K. Donat¹, Martin Ullrich¹, Klaus Kopka^{1, 2}, and Sven Stadlbauer^{1,*}

¹ Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.


² Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, Dresden, Germany

SDEN ROSSENDORF

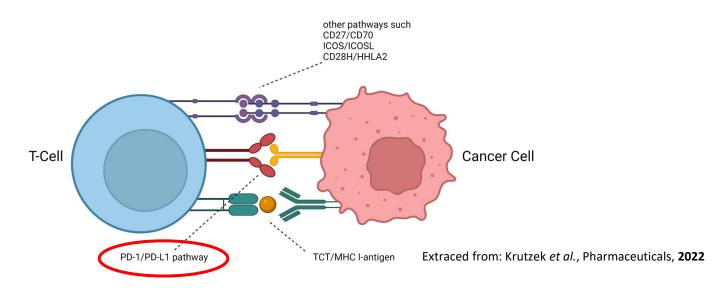
* Corresponding author: s.stadlbauer@hzdr.de

Small Molecule Radiotracers for PET Imaging of PD-L1 with Copper-64

The 8th International Electronic ECMC **Conference on Medicinal Chemistry** 01–30 NOVEMBER 2022 | ONLINE

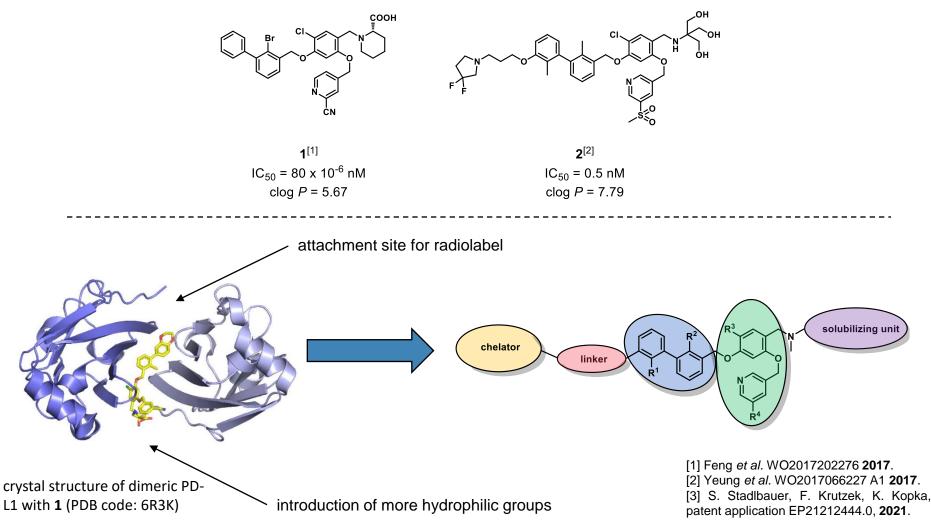
2022

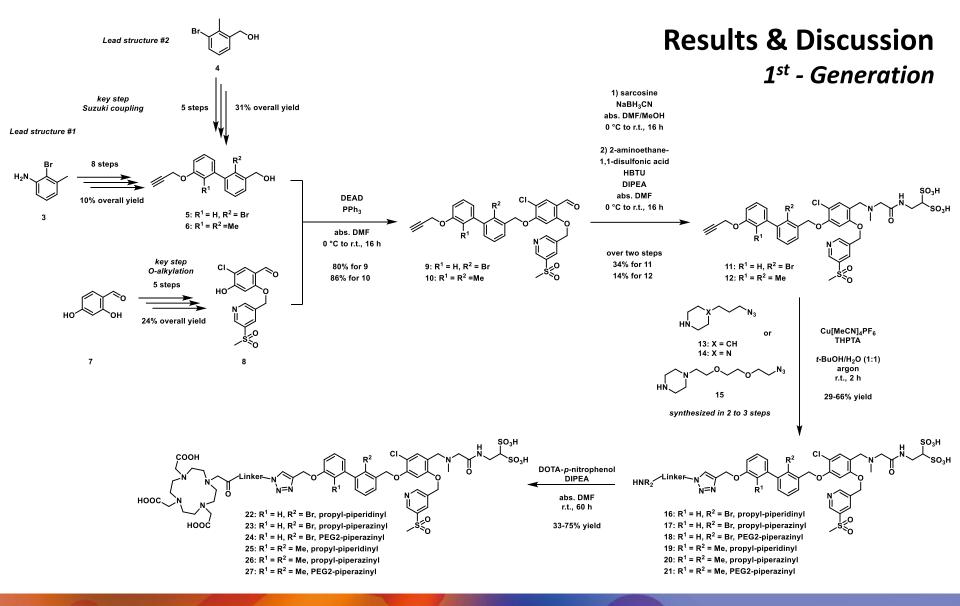
The programmed cell death ligand (PD-L1) is expressed on a number of different tumor entities and inhibits the immune response through binding to PD-1 on T-cells. Immune checkpoint inhibitors (ICI) prevent this blockade and thus can reactivate an immune response. However, only about 30% of the patients respond to an ICI monotherapy. Therefore, clinicians are in need for a non-invasive PET/SPECT radioligand for patient stratification and therapy monitoring.


Based on the structures of non-peptidic PD-L1 inhibitors, six different radiotracers were synthesized and radiolabelled with [⁶⁴Cu]Cu²⁺ (HZDR, 30 MeV TR-FLEX cyclotron). Binding affinities were determined on PC3 cells stably overexpressing hPD-L1. For *in vivo* studies, qualitative PET/CT imaging experiments (nanoSCAN PET/CT, Mediso) were performed in NMRI-FoxN1-nude mice bearing PC3-hPD-L1 and mock xenograted tumors.

Two PD-L1 inhibitors were modified with strongly water-soluble acid groups, hydrophilic linker units and a NODAGA-chelator resulting in six different radioligands. The log(D) values of the copper-64 labelled radiotracers were between -3.17 and -4.15 and binding affinities ranged between 80.5 and 533 nM. Depending on the number and the pattern of sulfonate and phosphonate groups, *in vivo* experiments showed drastically different pharmacokinetic profiles. The radiotracer with one sulfonate and phosphonate group and the most hydrophobic linker exhibited a short circulation time, renal clearance, good tumor uptake (SUV_{max} = 3.5) and a distinct contrast between the hPD-L1 and the mock tumor.

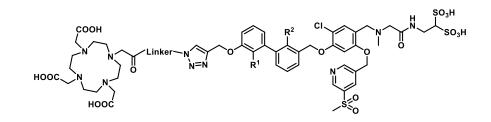
In conclusion one PD-L1 radiotracer showed a promising pharmacokinetic profile, which is currently further modified to improve the binding affinity and tumor uptake.


Keywords: copper-64; PD-L1; positron emission tomography (PET); radiotracers; structure-activity relationship (SAR)

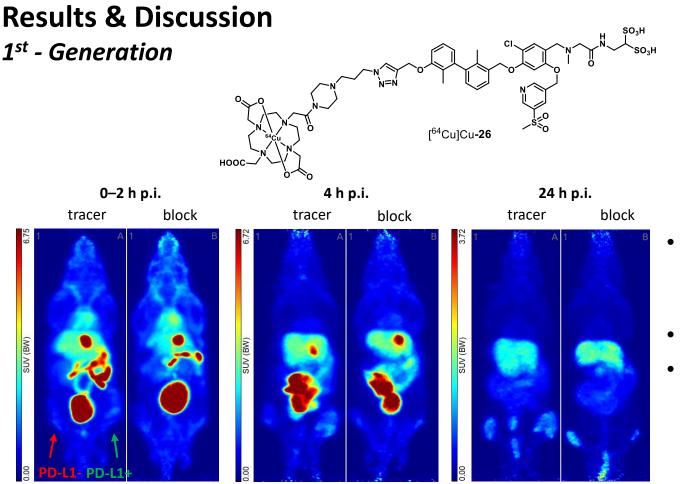

Introduction

- Programmed cell death-ligand 1 (PD-L1) is upregulated e.g. in lung, colorectal and ovarian cancer
- PD-1/PD-L1 immune checkpoint blockade allows immune evasion of cancer cells
- Immune checkpoint inhibitor (ICI) monotherapy: only ca. 30% response rate
- Clinical need for a diagnostic tool
- Molecular imaging techniques (PET, SPECT) can address heterogenous PD-L1 expression

Results & Discussion

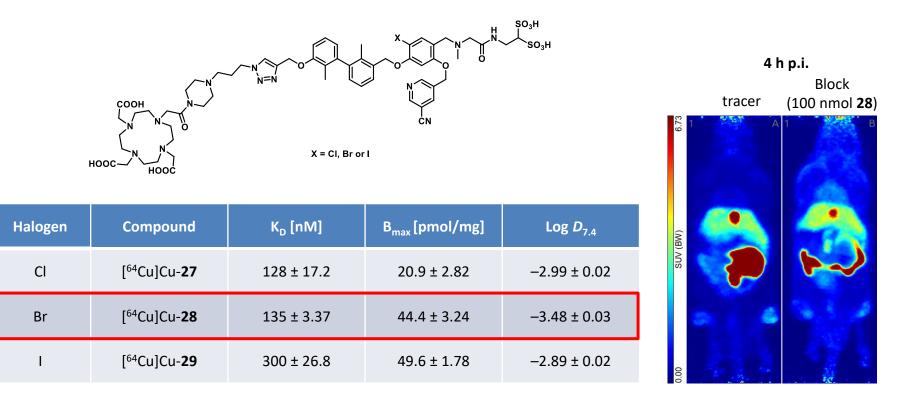


ECMC 2022


Results & Discussion

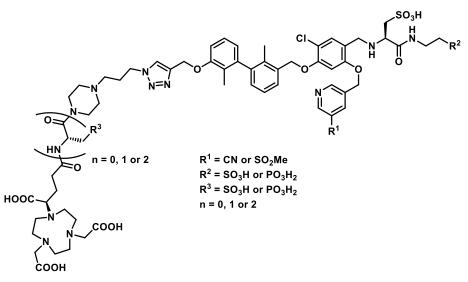
1st - Generation

Linker		R ¹ = H,	R ² = Br		$R^1 = R^2 = Me$			
	Compound	K _D [nM]	B _{max} [pmol/mg]	Log <i>D</i> _{7.4}	Compound	K _D [nM]	B _{max} [pmol/mg]	Log <i>D</i> _{7.4}
3 the N	[⁶⁴ Cu]Cu- 22	585 ± 53.0	11.7 ± 0.77	-2.73 ± 0.04	[⁶⁴ Cu]Cu- 25	123 ± 17.3	13.5 ± 1.38	-2.75 ± 0.04
³ k ^N → ³ k ^t	[⁶⁴ Cu]Cu- 23	487 ± 58.6	8.91 ± 0.63	-3.03 ± 0.05	[⁶⁴ Cu]Cu- 26	59.9 ± 6.05	5.43 ± 0.63	-3.14 ± 0.02
24 ^N 0 0 24	[⁶⁴ Cu]Cu- 24	351 ± 8.31	5.85 ± 1.72	-3.47 ± 0.10	[⁶⁴ Cu]Cu- 27	71.3 ± 13.2	7.04 ± 0.63	-3.50 ± 0.01

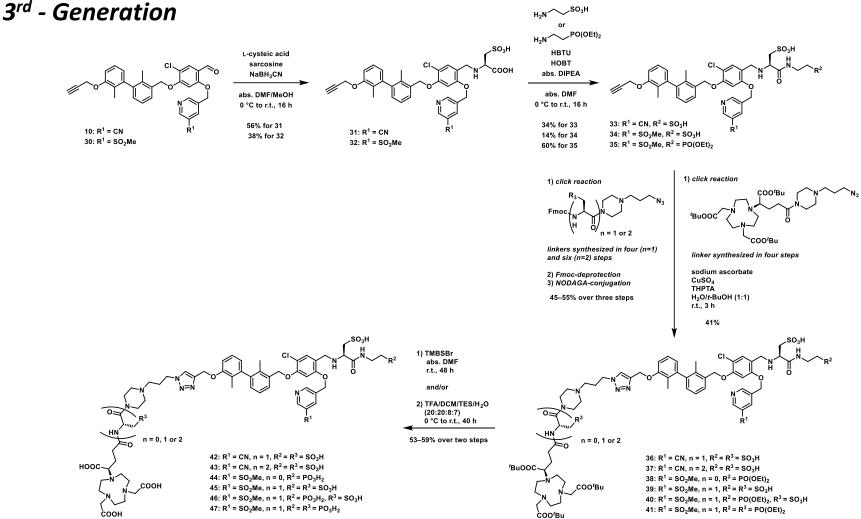


- NMRI-FoxN1 mice bearing PC3-hPD-L1 xenografted tumors
- Block: 100 nmol **26**
- left thigh: PD-L1right thigh: PD-L1+

→ Unusual high circulation time for small molecule-based radiotracers (albumin binding)


Results & Discussion 2nd - Generation

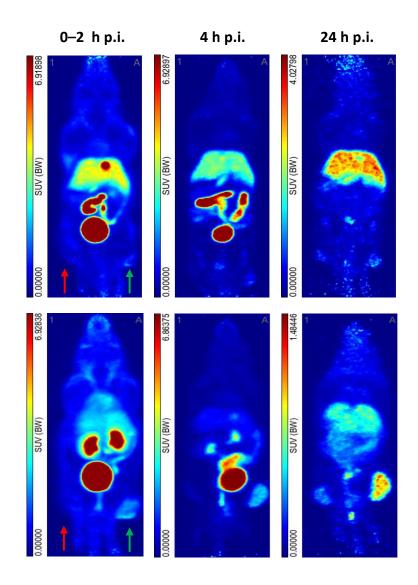
 \rightarrow Higher B_{max} values result in improved tumor uptake despite higher K_D values



Results & Discussion 3rd - Generation

- NODAGA- instead of DOTA-chelator to avoid transchelation of copper-64
- Introduction of more hydrophilic moieties
- Partial replacement of sulfonic acids with phosphonic acids to reduce albumin binding

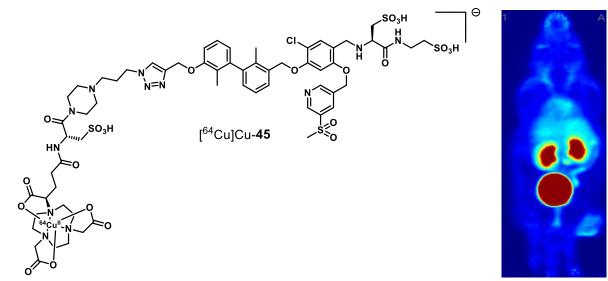
Results & Discussion


Results & Discussion 3rd - Generation (r) + (r

COOH

Compound	R ¹	R ²	R ³	n	K _D [nM]	Log <i>D</i> _{7.4}
[⁶⁴ Cu]Cu- 42	CN	SO ₃ H	SO ₃ H	1	80.5 ± 5.02	-4.00 ± 0.14
[⁶⁴ Cu]Cu- 43	CN	SO₃H	SO ₃ H	2	199 ± 23.8	-4.15 ± 0.09
[⁶⁴ Cu]Cu- 44	SO ₂ Me	PO ₃ H ₂	-	0	82.4 ± 7.42	-3.17 ± 0.02
[⁶⁴ Cu]Cu- 45	SO ₂ Me	SO ₃ H	SO ₃ H	1	93.7 ± 10.8	-3.80 ± 0.02
[⁶⁴ Cu]Cu- 46	SO ₂ Me	PO ₃ H ₂	SO ₃ H	1	112 ± 11.0	-3.81 ± 0.08
[⁶⁴ Cu]Cu- 47	SO ₂ Me	PO ₃ H ₂	PO ₃ H ₂	1	532 ± 77.0	-4.28 ± 0.08

ECMC 2022


Results & Discussion 3rd - Generation SO₃H [⁶⁴Cu]Cu-**44** [⁶⁴Cu]Cu-**45**

ECMC 2022

Conclusion

- 15 Small molecule-based PD-L1 radiotracers synthesized so far
- Highest determined binding affinity approx. 60 nM
- Hydrophilic compounds with $\log D_{7.4}$ values between -2.73 and -4.28
- [⁶⁴Cu]Cu-**45** with renal clearance and good tumor uptake (SUV_{max} = 3.5)
- Specificity proven with PD-L1 negative tumors and blocking experiments
- Structural modifications to further improve tumor uptake

Acknowledgments

Special thanks to:

- Dr. Sven Stadlbauer
- Prof. Dr. Klaus Kopka
- Dr. Cornelius K. Donat
- Dr. Martin Ullrich
- Christian Jentschel
- Dr. Kristof Zarschler
- Dr. Martin Walther
- Dr. Liliana R. R. Loureiro
- Dr. Falco Reissig

HELMHOLTZ ZENTRUM

ECMC 2022