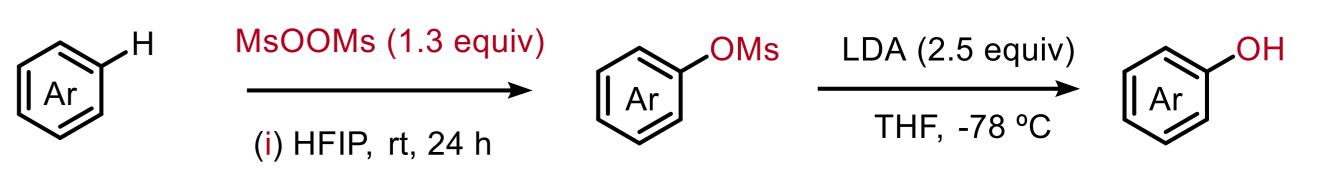
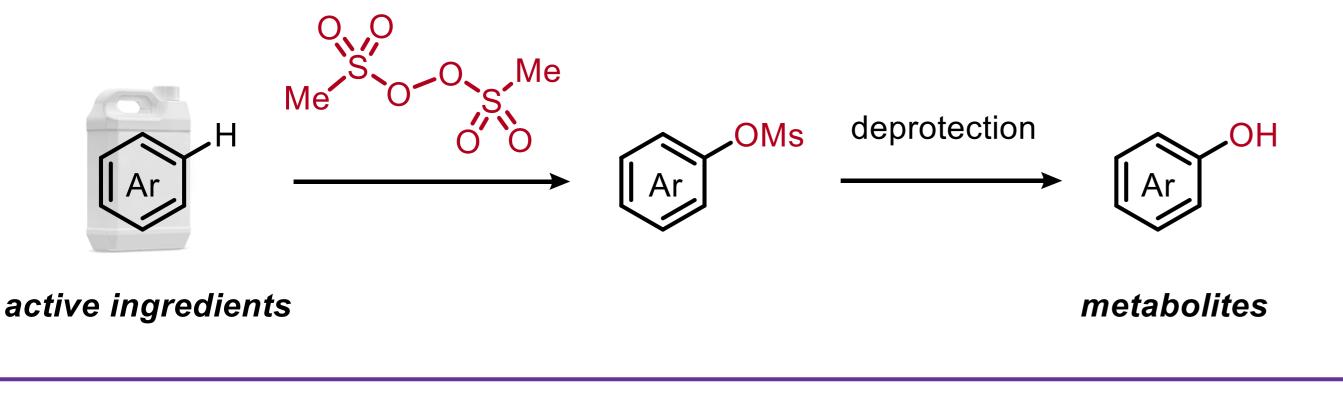
Late-stage oxygenation towards the preparation of metabolites of agrochemical active ingredients


Duarte B. Clemente^{a,b*}, Carlos M. Monteiro^c, Jaime A. S. Coelho^a

^aCentro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal. ^bDepartment of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal. ^cASCENZA Agro, S.A., Screening and Synthesis Laboratory, Setúbal, Portugal. ***Email: duarteclemente@alunos.fc.ul.pt**

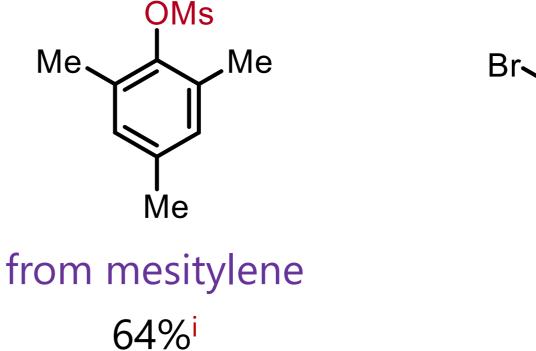
Motivation

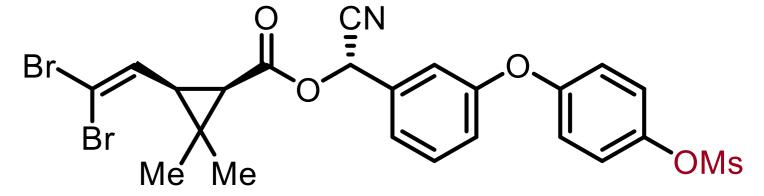
The development of plant protection products requires the safety profile analysis of active ingredients (AI), which includes synthesis and (eco)toxicity determination of **metabolites**. C-oxygenation is a very common phase-I metabolism reaction, catalyzed by cytochrome P450 enzymes^[1,2]. Thus, the synthesis of **oxygenated AI metabolites** is of


Aromatic oxygenated derivatives of AIs

great importance for agrochemical producing companies, such as ASCENZA Agro^[3].

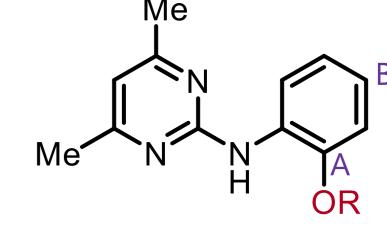
AI hydroxylation strategy


Synthesis of hydroxylated aromatic metabolites of several active ingredients, using a method described by Tobias Ritter and co-workers^[4]. This method allows for the **late-stage** oxygenation of the aromatic positions, by generating mesylate derivatives with bis(methanesulfonyl) peroxide as an oxidant, followed by conversion to the corresponding phenols.



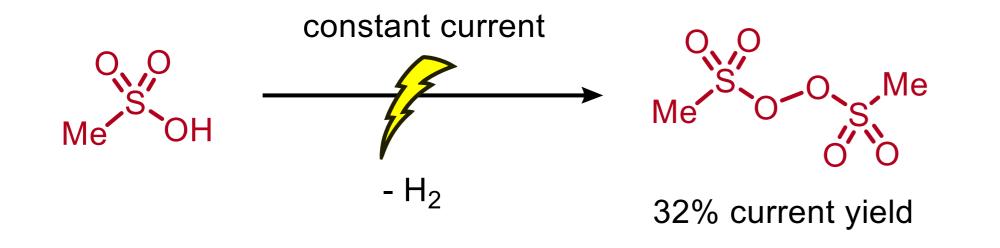

(1.0 equiv)

or (ii) [Ru(bpy)₃](PF₆)₂ (2.5 mol%) ACN, rt, 24 h



from deltamethrin 30%ⁱ

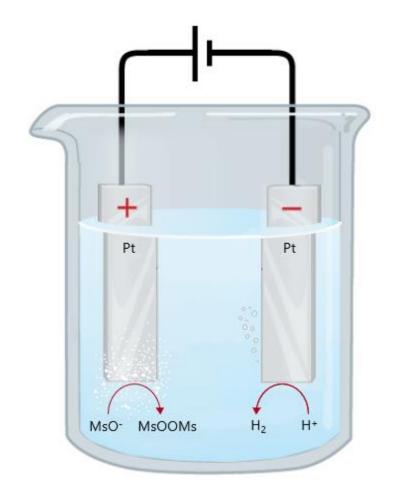
from bentazone


A:B 1:0.6 13%ⁱ

from pyrimethanil

A:B	
1:1	
R = Ms	47% ⁱ
R = H	71%

MsOOMs is a sulfonyl peroxide known since 1951^[5], and can be prepared by anodic oxidation of methanesulfonic acid, by **electrolysis** of an aqueous MsOH solution at constant current, in an undivided electrochemical cell^[6].



Conclusions

The synthesis of several mesylate derivatives of agrochemical Als was achieved, with good to satisfactory results, using a previously described method. The conversion of the pyrimethanil mesylate derivatives to the corresponding hydroxylated metabolites was accomplished with good results. Additionally, the optimization of a method for the synthesis of the peroxide reagent was attained.

References

[1] Reichl, F.-X.; Schwenk, M. *Regulatory Toxicology*, 2nd ed.; Reichl, F.-X., Schwenk, M., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, **2021**.
[2] *Chem. Res. Toxicol.* **2001**, *14* (6), 611–650.
[3] https://www.ascenza.pt/.
[4] *J. Am. Chem. Soc.* **2018**, 140 (47),

Optimized electrolysis conditions:

- [MsOH] = 10 M
- Pt electrodes
- I = 1.0 A
- t = 2 h
- V = 50 mL
- T = 20 °C

Since MsOOMs is insoluble in water, performing the electrolysis of an aqueous MsOH solution allows the **re-electrolysis of the solution**, by adding new MsOH after filtering off the peroxide.

Stable at room temperature, **decomposes explosively** at temperatures greater than 50 °C. 16026–16031. [5] U.S. Patent 2619507A, Nov 25, 1952. [6] J. Chem. Soc. **1964**, 4901–4907.

Acknowledgements

Financial support from Fundação para a Ciência e a Tecnologia (FCT, UIDB/00100/2020, UIDP/00100/2020, LA/P/0056/2020 and 2020/02383/CEECIND). The authors thank Dr. Ana Viana and Dr. Jorge Correia (CQE-FCUL) for assistance and equipment to perform electrolysis.

ECMC 2022

The 8th International Electronic Conference on Medicinal Chemistry 01–30 NOVEMBER 2022 | ONLINE