

The 8th International Electronic Conference on Medicinal Chemistry (ECMC 2022) 01–30 NOVEMBER 2022 | ONLINE

Binding to proteins of the pharmacologically active bis(maltolato)oxidovanadium(IV)

Chaired by **DR. ALFREDO BERZAL-HERRANZ**; Co-Chaired by **PROF. DR. MARIA EMÍLIA SOUSA**

<u>Maddalena Paolillo¹</u>, Giarita Ferraro¹, Giuseppe Sciortino², Eugenio Garribba,^{3,*} and Antonello Merlino^{1,*}

1 Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-

80126, Napoli, Italy; antonello.merlino@unina.it

2 Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain

3 Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy. E-mail:

garribba@uniss.it

* Correspondence: A.M., antonello.merlino@unina.it; or E.G., garribba@uniss.it

Binding to proteins of the pharmacologically active bis(maltolato)oxidovanadium(IV)

Abstract: Bis(maltolato)oxidovanadium(IV) ($[V^{IV}O(malt)_2]$ or BMOV, where malt is maltolato) and bis(ethylmaltolato)oxidovanadium(IV) (BEOV) are among the most potent orally active insulin-mimetic agents. They have undergone extensive pre-clinical testing. Even though these experimentations were temporarily stopped due to renal problems of several patients and financial problems of Akesis Pharmaceuticals, BMOV is usually considered the reference for the new molecules with insulin-mimetic action. Surprisingly, recently the tests on BMOV are continued by CFM Pharma (CFM10, Vanadis) and now it is arrived to the phase II for the treatment of patients with injuries on secondary tissues caused by accidents or fire and with myocardial infarction. Proteins play a central role in the biospeciation of V compounds in the organism, because of both their high affinity toward V and their high concentration in biological fluids. Here, the interaction of BMOV with two model proteins has been analyzed by X-ray crystallography. Data indicate both non-covalent binding of cis-[VO(malt)₂(H₂O)] and $[VO(malt)(H_2O)_3]^+$ and covalent binding of $[VO(H_2O)_{3-4}]^{2+}$ and *cis*- $[VO(malt)_2]$ and other Vcontaining fragments to the side chains of Glu, Asp and to the C-terminal carboxylate. Thus, our results suggest a multiple and variable interaction of BMOV with proteins. Our data can help to better understand the BMOV solution chemistry and contribute to define the molecular basis of the mechanism of action of this intriguing metallodrug.

Keywords: metallodrugs; protein metalation; V compounds; protein metal compounds interactions

Introduction

3d³4s Vanadium compounds (VCs) show a wide variety of pharmacological actions Vanadiur 50.942 Among the VCs with anti-diabetic properties bis(maltolato)oxidovanadium(IV) (BMOV) is particularly interesting Interaction with proteins is relevant

ECMC 2022

Vanadium compounds

Vanadate similarity to phosphate helps to explain its effect on phosphorylation events in the body

Oxidovanadium(IV) compounds

BMOV is arrived to the **phase II** for the treatment of patients with injuries on secondary tissues caused by accidents or fire and with myocardial infarction

Bis(maltolato)oxidovanadium(IV) (BMOV)

In aqueous solutions different species can be formed. The ability to characterize BMOV in these solutions is critical for its possible use in diabetic treatment

Interaction of BMOV with metabolites and proteins

Proteins play a significant role in biospeciation and biotransformation of a vanadium compound in the organism

Aim of the work

Crystallization of the adducts obtained upon reaction of BMOV with the model proteins hen egg white lysozyme (HEWL) bovine pancreatic ribonuclease (RNase A)

Refinement of crystal structures of HEWL and RNase A treated with BMOV, identification and interpretation of BMOV binding sites

Results and discussion

Overall structures of HEWL in the presence of BMOV

Results and discussion

Overall structure of RNase A in the presence of BMOV

ECMC 2022

Structures A (1.13 Å) and A' (1.22 Å)

Analysis of the diffraction data reveal that the structures **A** and **A**' show some local variations

Structure A (1.13 Å)

Structure **A** R_{factor}/R_{free} 0.199/0.249

Noncovalent bindings of cis-[VO(malt)₂(H₂O)] and [VO(malt)(H₂O)₃]⁺ together with the covalent binding of [VO(H₂O)₄]²⁺ to the side chain of Asn65 are found

есмс 2022

Structure A' (1.22 Å)

Noncovalent bindings of the two cis-[VO(malt)₂(H₂O)] together with the covalent binding of the [VO(malt)₂] to the side chain of Asn65 are found

ECMC 2022

Structures A and A'

These data are in perfect agreement with the ESI-MS experiments and with the EPR data

Structure B (1.31 Å)

ECMC 2022

Structure B (1.31 Å)

and colored in grey; the e.d. map is in red

Structure of RNase A (1.95 Å)

Structure of RNase A R_{factor}/R_{free} 0.191/0.256

A V-containing fragment is found close to the C-terminal tail in both molecules present in the asymmetric unit

ECMC 2022

Conclusions

1. BMOV can bind proteins non-covalently, but it can also coordinate residue side chains upon losing one or more of its ligands

- 2. The protein structures are almost unaffected by the binding of the V compound
- 3. The reactivity of BMOV with HEWL and RNase A elucidated in this work could help in the understanding of the mechanisms at the basis of the formation of V^{IV}O carrier– protein adducts

Acknowledgments

We gratefully acknowledge the Elettra Synchrotron staff for their assistance during data collection.

