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Abstract: Laser scanners recording a huge number of data points from different surfaces are widely 

used to capture the exact geometry of 3D objects. These large amounts of data require intelligent 

solutions to be examined and processed efficiently. Deep learning-based approaches have found 

their way into many data analytics applications to process such large datasets, categorize them, or 

even determine the most informative portion of the data. This research focuses on 3D deep learning 

techniques directly applied to point clouds to determine the most important features of a 3D shape. 

More specifically this research adopts PointNet as a backbone architecture for feature extraction 

from 3D point clouds and computes a Gradient-Based Class Activation Mapping (Grad-CAM) on 

each object to create a 3D importance/saliency map. Experiments confirm the success of the pro-

posed approach in determination of important features of 3D objects as compared with the ground 

truth. 
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1. Introduction 

High resolution 3D scanners have become popular devices to collect point-cloud 

data from 3D objects. Exploratory analysis and visualization of such large amounts of 

data is crucial for many applications such as scene reconstruction, object recognition and 

autonomous navigation. As such, computing 3D importance (saliency) maps is a topic of 

interest in computer vision. While most of the saliency detection approaches take into 

consideration the geometrical features of objects, some research works target reproduc-

ing human perception capabilities and use them as a data selection strategy. In this con-

text, the idea of mimicking human visual attention capabilities has the potential to im-

prove recognition in terms of performance and time. On the other hand, the use of point 

clouds has become inevitable for several applications and domains such as robotic per-

ception, video games, autonomous driving, virtual and augmented reality, etc. Most 

researchers transform these data into grids of 3D voxels or collections of images. How-

ever, this makes the data unnecessarily large and poses problems for an efficient inter-

pretation of its contents. 3D learning algorithms on point cloud data present a very 

promising approach for many problems, such as 3D object detection and classification. 

Some deep neural network algorithms [1] already propose methods to use point clouds 

for a 3D object representation and learn the global features to recognize the related object. 

The main contribution of this paper is to propose a novel approach to identify a subset of 

salient (important, critical) points on the surface of 3D objects represented by point 

clouds (using PointNet architecture), to specify and visualize the importance of each 

critical point with respect to its classification (using an adaptation of Grad-CAM from 2D 
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to 3D), then visualizing the detected salient regions and comparing the results with ex-

isting methods and against the ground truth. 

2. State of the Art 

As previously mentioned, identification of salient regions of a 3D object has the po-

tential to ease further analysis and processing of the object. Therefore, many research 

works aim at the identification of saliencies on 3D objects. Leifman et al. [2] introduce a 

vertex descriptor to highlight vertices with unique geometrical features with respect to 

their surroundings. Their descriptor is invariant to rigid transformation. A cen-

ter-surround mechanism initially introduced in the classical model of visual attention [3] 

is applied to curvature measures of 3D object meshes by Lee et al. [4], as a method of sa-

liency detection. Song et al. [5] propose a 3D saliency detector for triangular meshes 

based on spectral mesh processing. Tasse et al. [6] take advantage of fuzzy clustering to 

highlight salient regions on 3D meshes. While all these algorithms show promising solu-

tions for saliency detection, it has been proven that these implementations are still far 

from the capabilities of the mechanism of visual attention in humans [7]. 

In recent years, deep learning has strongly contributed to important advances in a 

variety of fields such as text understanding, speech recognition and computer vision. 

When trained on large number of training samples, deep learning-based approaches are 

capable of extracting relevant information from the input data and using it for a variety 

of tasks such as classification and regression. While deep learning architectures are gen-

erally considered as black boxes, a huge research effort has been devoted to revealing the 

reasoning behind the decision of a deep neural network. In this direction, class activation 

mapping (CAM) [8] is a method for highlighting important regions in an image for a 

specific decision. The Global Average Pooling (GAP) layers in the architecture of deep 

neural networks are able to identify discriminating regions and retain the localization 

capability until the last layer in order to visualize the most informative regions in an 

image. Another approach, proposed in [9], detects regions of interest in an image by 

passing it through a convolutional neural network (CNN) to classify it and computes the 

gradient of the classification score with respect to the activations of the last convolution 

layer. The regions of the image that have the highest weight are the regions that most in-

fluence the classification score. This approach is known as Gradient Weighted Class Ac-

tivation Mapping (Grad-CAM). Considering the existing works, the main objective of this 

research work is to bring contributions to the identification of salient/critical points on 

the surface of 3D objects represented by point clouds. The work builds on the deep con-

volutional network PointNet and addresses the problem of the lack of the means to 

evaluate the importance of critical points in relation to the classification performance as 

well as the lack of transparency and visualization of the results in an intuitive and un-

derstandable way. This is achieved by adapting the Grad-CAM algorithm for 3D objects 

in order to specify the importance of each critical point with respect to its classification. 

3. Framework 

3.1. Point Cloud Representation of 3D Objects 

A point cloud (or point set) is a type of geometric data structure in the form of an 

unordered set of points in a three-dimensional coordinate system x, y, and z. The set of 

points represent a 3D shape or object. As part of this work, we use the Trimesh library 

[10] which allows to load a 3D mesh or a vectorized path into a Trimesh object. The latter 

contains a 3D triangular mesh. The purpose of transforming 3D objects into Trimesh ob-

jects is not only for the visualization of the object, but also to facilitate the transformation 

of the dataset into point clouds. In this way, we transformed the mesh of each object into 

a point cloud representation based on 2048 points by uniform sampling of x,y and z co-

ordinates. 

https://en.wikipedia.org/wiki/3D_shape
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PointNet Architecture 

In order to process point cloud representations of 3D objects, we used PointNet [1] 

as deep neural network backbone. PointNet takes raw point cloud at the input and learns 

both global and local features of points, providing a simple and effective approach for a 

number of 3D recognition tasks. We used it for the classification of 40 classes of 3D ob-

jects [10], where each object is represented by a set of 2048 points and each point is 

treated individually and in a similar manner. The PointNet architecture is quite simple; 

two multilayer perceptron networks are used to integrate an input x into a higher di-

mensional space, in our case to map each point among the n points from 3 dimensions to 

64 dimensions. This procedure is repeated later to map the points from 64 to 1024 di-

mensions. These networks are followed by a Max Pooling operation, which consists in 

the application of a symmetric function to aggregate the information from all the points 

of the 3D object resulting a global feature vector, followed by another multilayer per-

ceptron network to process the aggregated feature and finally a softmax activation func-

tion to normalize the score of the points. PointNet makes use a regression network called 

T-Net to achieve an affine transformation for normalization purpose by predicting an 

input-dependent 3-by-3 transformation matrix for input transform as well as a 64-by-64 

transformation matrix for feature transform; these matrices are the result of a combina-

tion of input-dependent features and globally trainable weights at the final fully con-

nected layer of T-Net. Further details about the architecture of the PointNet architecture 

are available for the interested reader in [1]. 

One of the problems of the PointNet model is the lack of transparency and visuali-

zation of the results in an intuitive and understandable way. In order to understand the 

classification steps as well as the choice of the model in relation to the classification, we 

considered the different layers of the model and created a pipeline in order to extract the 

output of each layer, thus enabling the visualization of points and regions of an object. 

3.2. Gradient Class Activation Mapping 

To understand the reasoning behind network decisions and to highlight important 

regions of a point cloud, the Grad-CAM algorithm was used to exploit the spatial infor-

mation that is preserved by the convolutional layers to understand which regions of the 

input object are important for making a certain classification decision. Grad-CAM uses 

the existing gradient information in the last convolutional layer of the PointNet convolu-

tional neural network to assign importance values to each neuron. This technique can be 

used to explain the activations in any layer of a deep network. In particular, the algo-

rithm looks for which parts of the image led a convolutional neural network to its final 

decision. From this information, it produces heat maps representing the activation classes 

on the images. To reproduce the same result on a 3D object, we adapted Grad-CAM to 

work in 3 dimensions (x, y, z), therefore building an extension of Grad-CAM from 2D to 

3D. In order to obtain the discriminative class location map (𝐿𝐺𝑟𝑎𝑑 −𝐶𝐴𝑀

𝐶 ), we calculated 

first the gradient of the class score c, 𝑤𝑘
𝑐  respecting the feature activation map 𝐴𝑘 (fea-

ture map activations) of the last convolution layer, 
𝜕𝑤𝐶

𝜕𝐴𝑘 . These gradients are then pro-

cessed by a Max Pooling operation on the dimensions x, y and z to obtain the importance 

weights of the neurons and produce a score, 𝑤𝑘
𝑐. This resulted in a vector where each 

element represents the maximum intensity of the gradient. After that, each channel in the 

feature map extracted from the last layer was multiplied by the importance of that 

channel relative to the class with the highest score. We then added all the channels to 

obtain the class activation heatmap. 
In our case, the class activation heatmap is an importance vector of size (2048, 3) that 

represents the salience of each point of the object. To obtain a good resolution for the 

visualization of the class activation heat map, we transformed this vector of dimensions 

(2048, 3) into (n, 3) where n is the number of vertices of the initial object. To do this, we 

first used a scipy.ndimage library to enlarge the vector of critical points and thus to in-
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crease the resolution (size) of the point cloud. We then used the K-nearest neighbor al-

gorithm which allows, for all the initial object vertices, to find the index of the closest 

vertex to the simplified object in order to assign the level of saliency of the closest verti-

ces. In this way, the resolution of the saliency vector was increased, and it was possible to 

assign the vector to the initial object, thus preserving the details of the initial 3D object 

and obtaining a higher-resolution representation of the saliency vector. Figure 2 shows 

the entire process employed for visualizing the critical points at higher resolution. 

 

Figure 1. The proposed framework for saliency determination in point clouds. 

4. Results and Discussion 

We have tested the proposed framework on five 3D objects which can be categorized 

in one of the categories of ModelNet [11] and for which the ground-truth information is 

available [7]. Figure 2 compares the saliencies rendered using a jet colormap for the five 

objects extracted from [7] and with different methods from the literature. 

It can be noticed that the critical regions on the surface of the objects are different, 

due to the different methods employed to create each model. Lee [4], apply the cen-

ter-surround paradigm used by Itti [3] to a vertex curvature metric of a 3D object to 

compute saliency. Leifman [2] propose a surface saliency detector by highlighting verti-

ces with unique geometry. For this purpose, they introduce a vertex descriptor that is 

invariant to the rigid transformation and search for vertices that are highly dissimilar to 

their neighborhood. The algorithm for saliency detection of Song [5] is based on spectral 

mesh processing. Tasse [6] proposes a framework using fuzzy clustering to detect salient 

regions on 3D meshes. The 2D Grad-CAM algorithm VGG16 [12] computes and inte-

grates Grad-CAM maps for 2D images captured from various viewpoints of each 3D ob-

ject based on their different shapes and semantic features. Further details about other 

methods are provided in Section 2. The ground truth is generated by tracking the eye 

movement of human subjects when observing the object from 3 different viewpoints [7]. 

To quantitatively compare the similarity of the results of the different models, we 

chose a box plot diagram (Figure 3) to visualize the similarity between the saliency level 

vectors and the ground reality (GT [7]) for the comparison of results obtained for several 

objects. To obtain a fair comparison for each method, three saliency level vectors are ob-

tained by multiplying the saliency level vectors by the visibility vectors (the list of verti-

ces visible from each viewpoint), then all vectors are normalized between 0 and 1. The 

correlation coefficient used is Pearson’s Linear Correlation (ρ), which allows a balanced 

treatment of false positives and false negatives. For two maps x and y, it is defined as 

follows: 𝜌𝑥,𝑦 =
𝑐𝑜𝑣(𝑥,𝑦)

𝜎𝑥𝜎𝑦
. 
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Figure 2. Different visualizations of the object saliency computed using different methods: (a) 3D 

Grad-CAM PointNet (our method); (b) Lee [4]; (c) Leifman [2]; (d) 2D Grad-CAM VGG16; (e) 

ground truth; (f) Tasse [6]; and (g) Song [5]. 

 

Figure 3. Similarity between the vectors of the levels of importance and the ground truth [7]. 

The same correlation measure is used by Lavoué et al. [7], who also concluded that 

none of the existing methods give a strong correlation with the ground truth. It can be 

observed that for all methods, the interquartile range is almost similar for the test objects 

used and varies between 0.18 and 0.6. The interquartile mean varies between 0.34 and 

0.47, demonstrating some similarity between the features extracted by different methods. 
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Figure 3 (which shows this correlation coefficient) also confirms that, for some view-

points, our method (3D Grad-CAM PointNet) obtains the highest similarity values 

among all methods compared. The success of the Grad-CAM-based methods can be ex-

plained by the fact that these methods assign the highest saliency level to the regions 

(pixels in 2D or vertices in 3D) to the highest gradient update when classifying the object, 

while the other methods are rather based on geometric features. Thus, the Grad-CAM 

based methods focus on a single region, while the other methods obtain sparse regions 

on the models. 

5. Conclusions 

In this work, we proposed a hybrid method that combines two architectures, the 

PointNet deep neural network and an adapted version Grad-CAM, 3D Grad-CAM. Our 

solution includes pre-processing of 3D data, implementation and training of the PointNet 

model, adaptation of Grad-CAM for 3D data, integration of Grad-CAM with PointNet 

model and visualization of critical/salient points extracted by PointNet and Grad-CAM 

The paper demonstrated a good performance of the proposed method compared to sim-

ilar works in literature. 
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