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Abstract: Exposure to pollutants like ozone and nitrogen dioxide gas can cause serious health issues 

and harm the environment. Therefore, the interest in air quality and its impact on health and well-

being has been steadily increasing over the years, making the low-cost gas sensing devices com-

bined with artificial intelligence (AI) more and more popular due to their flexibility and small form 

factor. While AI provides state-of-the-art performance, it makes the system less transparent and 

more difficult to trust its decisions. With the aid of three different approaches, this paper seeks to 

understand and explain the predictions made by complex models for gas sensors. The use of such 

techniques can increase our confidence in the AI systems embedded in our products in terms of 

fairness or impartiality and robustness or reliability. This also improves our understanding of the 

sensor behavior and provide a more robust explanation for algorithm choices. 
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1. Introduction 

The increasing quantity of air pollutants such as ozone (O3) and nitrogen dioxide 

(NO2) poses a serious threat to humans, animals, and plants in today’s world, and there-

fore, it has become necessary to monitor these pollutant levels. Recently, low-cost gas sen-

sors with graphene as the primary material have gained popularity to detect such pollu-

tants, owing to their properties of good adsorption of gas molecules, low power consump-

tion and low costs [1,2]. The graphene sensor under study consists of four sensing fields 

functionalized with different additional materials to trigger different chemical interactions 

between the sensor and the target gases. Gas molecules absorbed by the graphene sheet 

can have an influence on its electrical conductance, making it possible to use resistance as 

sensor signals. To avoid the potential saturation of graphene with gas molecules still on 

the surface, the sensor is heated to a high temperature periodically to accelerate desorp-

tion. Our application employs a recurrent neural network, namely a Gated Recurrent Unit 

(GRU) network [3], to estimate the concentrations of O3 and NO2 in parts per billion (ppb) 

using the features extracted from raw signals. 

While artificial intelligence has gained significant traction over the years [4,5], the 

question of whether we can trust such sophisticated models owing to their lack of trans-

parency persists. In recent years, many researchers have been developing novel methods 

to make models more interpretable and explainable [6–8]. Methods such as LIME (Local 

Interpretable Model-Agnostic Explanations) [9] have emerged to explain the predictions 

made by these models. Our paper uses three approaches to make our models reliable and 

trustworthy. These approaches helped us understand and improve the sensor behavior, 

and at the same time, develop more robust models. 
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The first approach is the Shapley Additive Explanations (SHAP) method, which 

ranks the features in order of their importance. This method was developed by Lundberg 

and Lee [10] and has been recently used in a variety of research, including finance [11] 

and healthcare [12]. The second method is to understand the internal architecture of our 

GRU network. This approach is highly inspired by the work of Karparthy et al. [13] on 

visualizing recurrent networks for text processing and Tang et al. [14] on memory visual-

ization in speech recognition. The third approach aims to quantify the uncertainty of pre-

dictions made by our neural network, applying techniques from Bayesian Deep Learning 

[15]. Both Aleatoric and Epistemic Uncertainty are quantified and their meaning for the 

gas sensor is interpreted. 

2. Methods and Results 

2.1. SHAP Method 

SHAP analysis estimates the individual contribution of each input feature to the 

overall prediction output using Shapley values [16]. The features are then ranked accord-

ing to their contributions, with the highest estimates contributing more to model decisions 

and the lowest estimates either indicating that the features should be removed from the 

model or that more research is needed to raise their quality. The SHAP method is capable 

of calculating both local and global feature importance, where the former calculates the 

SHAP values of each of the data points and the latter determines for all data points and 

then averages the absolute values obtained [17]. We conducted our experiment to deter-

mine the global importance, and for this, fourteen features were extracted, namely, the 

relative resistances R0, R1, R2, and R3 for the four sensing fields, their corresponding first-

order derivative, amplitude, phase and total harmonic distortion [18]. 

2.2. Results for SHAP Analysis 

The feature ranking plot is shown in Figure 2 where the features are ordered in de-

creasing order of importance. Figure 2 shows R1 and its corresponding amplitude of first 

harmonic having the highest contributions, and R3 and its corresponding features having 

the least importance in the predictions, despite the fact that R3 is assumed to be a very 

significant feature since additional R3 characteristics like derivatives and frequency fea-

tures are extracted from this core feature. Based on this analysis, the material of the fourth 

sensing field (R3) was improved, and as a result, it became one of the most stable fields in 

our sensor array. This can be seen in Figure 3, where the phase angle and relative re-

sistance of this sensing field have the highest contributions to the predictions. Also, as 

seen in Figure 2, the SHAP analysis revealed that the features with higher-order (second 

and third) harmonics had little contribution to the predictions. This allowed us to remove 

these features, as shown in Figure 3, thereby allowing us to build a model that is both 

smaller and more efficient. 
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Figure 2. SHAP variable importance plot. The features include: Resistance, Derivative, Amplitude 

(n), PhaseAngle (n), and Distortion for each of the four sensing fields. Here, n = 1, 2, and 3, repre-

senting the 1st, 2nd, and 3rd harmonics. 

 

Figure 3. SHAP variable importance plot for model with reduced feature set and improved material. 

2.3. Network Dissection 

When using neural networks for predictions, we know the inputs and the outputs. 

However, we are not aware of what happens internally that makes such models reach 

specific decisions. This makes it challenging to understand why a certain prediction did 

not meet our expectations. Our research aimed to address this issue by inspecting the net-

work’s inner-architecture. As we employed GRU for the predictions in our application, 

we investigated its internal structure by examining the hidden state output of each GRU 

unit. As each unit reacts differently to each of the gases and their concentration levels, the 

goal is to understand which units are in charge of predicting one gas in the absence of 

another, when both the gases are not present, or when there is a mixture of both in the air. 

It is like doing reverse engineering in the sense that we first view the output layer and 

then analyze the hidden layer(s) based on the outcome of the output layer. Due to the 

inclusion of the tanh function in each candidate hidden state, which causes the output of 

each hidden state to range from −1 (negative activation) to 1 (positive activation) [19], we 
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formed two clusters, placing all positive activations in one and all negative activations in 

the other. 

2.4. Results for Network Dissection 

As shown in Figure 5, when there is almost no NO2, the activations of Unit 9 are 

positive (orange points), otherwise negative (blue points), whereas Unit 5 gives positive 

activations when there is no O3. Unit 3 is responsible for identifying the scenario when 

both the gases are absent, in which case, the activations are positive, and in the presence 

of both the gases, the activations are negative. When either of the two gases is absent, Unit 

6 gives positive activations, otherwise negative. Unit 8 shows the patterns when there is a 

mixture of both gases, where the activations are negative when O3 is below 90 ppb, and 

positive for above. In Unit 4, for a combination of no O3 and NO2 approximately above 8 

ppb, the activations are negative, but as O3 increases, these become positive. No unit 

showed such a pattern when there is a gradual increase in NO2; this confirms that as O3 

increases, NO2 slowly gets overshadowed by the model. This investigation confirms the 

general observation that chemical sensors typically struggle to detect NO2 when O3 con-

centrations are higher. Also, not all the units gave a human-level understanding, as in the 

case of Units 7. 

  
  

   

  

Figure 5. Activations of Units. The orange dots show positive activations and the blue dots show 

negative activations. 

This analysis was also done with fewer units in the beginning, but it was difficult to 

make any interpretations because the patterns were not clearly distinguishable. This also 

sheds some light on hyperparameters optimization, like choosing the right number of 

units by understanding the network’s behavior instead of simply using a heuristic ap-

proach. 

2.5. Bayesian Deep Learning 

Having now analyzed how input features impact model decisions via SHAP and vis-

ualized internal workings of the network via Network Dissection, techniques from 
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Bayesian Deep Learning can help us to provide a more interpretable and reliable output 

to our model by quantifying its uncertainty. Many applications require accurate but also 

reliable and trustworthy predictions. However, Machine Learning models are often over 

or under confident in their predictions and thus equipping models with the ability to tell 

a user when they are uncertain about their predictions leads to higher trust for the use of 

AI in safety critical environments. Bayesian Deep Learning provides such techniques for 

uncertainty quantification in neural networks [15].  

Uncertainty can be divided into Aleatoric Uncertainty (Data Uncertainty), which re-

fers to the data’s inherent randomness that cannot be explained away. (e.g., noise) and 

Epistemic Uncertainty (Model Uncertainty), which refers to the uncertainty of the model 

and is affected by model choices and amount of training data. 

Aleatoric Uncertainty in neural networks can be evaluated by designing the network 

to have an output neuron for mean and variance and training it with a log-likelihood loss 

function [15]. The Aleatoric Uncertainty information is represented in the corresponding 

variance. 

Evaluating Epistemic Uncertainty is more challenging, as it requires modeling pos-

terior distributions over weights. This becomes computationally intractable and therefore 

needs to be approximated. Gal & Ghahramani present an approximation method called 

Monte Carlo Dropout [20]. Dropout is known for being a regularization technique used 

during training, where random neurons in the network are ignored or “dropped” to avoid 

overfitting [21]. In contrast to its original intent Dropout can also be used during inference 

to drop random neurons each time the network is used for a prediction, resulting in a 

different network for each prediction. Using this to perform multiple predictions on the 

same data, we can statistically evaluate the variance between predictions and interpret 

this as the Epistemic Uncertainty. 

2.6. Results for Bayesian Deep Learning 

For the gas sensors under study, the Data Uncertainty is reflected in the different 

reaction of individual sensors to the same gas concentration, i.e., sensor-to-sensor varia-

tion and also in the same sensor reacting differently when exposed to the same gas con-

centration again, which can be due to previous saturation or aging. In contrast, by quan-

tifying Model Uncertainty via Bayesian Deep Learning, we can identify specific situations 

in which our model performs poorly and plan tailored experiments to generate the right 

training data and improve the performance of the model in theses situations, rather than 

blindly performing expensive and time-consuming measurements to generate more data 

overall. Figure 6 shows the model predictions for a given O3 concentration profile. Both 

Aleatoric and Epistemic uncertainty are higher for higher concentrations, which means 

that the sensors response is less consistent for higher concentrations but also that more 

training data for higher concentrations would be beneficial for model performance.  
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Figure 6. Model predictions (blue) for a given O3 concentration profile (orange). Both the Aleatoric 

and Epistemic Uncertainty (light blue and green, respectively) are visualized by defining a region 

of ±2*σ of each uncertainty around the mean prediction. 

3. Discussion 

In this work, we presented three techniques that help with understanding why and 

how our model generates specific concentration predictions from a low-cost gas sensor.  

First, we saw how SHAP analysis helps in the decision-making process of a model 

based on various input features and gives useful information on the underlying sensing 

mechanism and technology. Furthermore, the SHAP analysis aided in developing a more 

efficient model by identifying features that did not contribute much to the predictions, 

such as higher-order harmonics, and therefore, assisting in dropping off those features 

from the study. When working with smart sensors, such models with fewer dimensions 

are especially advantageous since they require less memory and processing power, thus, 

save energy.  

The second approach helped dive inside the model’s inner architecture. This method 

demonstrated that even black-box models like GRU can be quite transparent, making it 

still possible to trace the underlying rationale of its components. 

Finally, we used approaches from Bayesian Deep Learning to quantify model and 

data uncertainty in our gas concentration predictions. This information allows to identify 

situations where more data is needed to improve the model via Epistemic Uncertainty as 

well as situations than cannot be improved with more data or different model decisions 

and therefore need to be solved on sensor technology level. 
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