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Abstract: In recent years model-based fault techniques become really popular due to reducing cal-

culation cost. Bayesian Network and Two Stage Kalman Filter based methods have recently become 

quite popular due to their robustness. In this paper, model-based fault diagnosis method is pre-

sented that uses Bayesian Network and Two Stage Kalman Filter (TSKF) together to determine the 

sensor faults robustly in the Unmanned Aerial Vehicle (UAV) system. By using these two ap-

proaches together, the robustness of the detection of the fault in the sensor improved. For demon-

strating the behavior of the proposed method, numerical simulations are performed in 

MATLAB/SimulinkTM environment. The results show that the proposed method is capable of de-

tecting the faults more robustly. 

Keywords: unmanned aerial vehicle; two stage kalman filter; model based fault diagnosis;  

bayesian network 

 

1. Introduction 

UAVs have gained a high level of popularity during the last decade in civilian, mili-

tary, and engineering applications because of the recent advances in sensing, communi-

cating, computing and controlling technologies. UAVs have several basic advantages over 

manned systems including increased maneuverability, reduced cost, reduced radar sig-

natures, longer endurance, and less risk to human life. Their range are in size from full 

scale craft to miniature aircraft in centimeter size. These UAVs are driven by electric mo-

tors, petrol engines or gas turbines. There are lots of benefits to use UAV in different cir-

cumstances. For example, carry over to civilian aircraft that operate in hazardous condi-

tions. Another using condition is, unmanned aircraft could carry out power line inspec-

tion in electrical cables. They are also used in, mining, detection agriculture and photo-

graphing. As an example of UAV systems, the quadrotor is a relatively simple, affordable, 

and easy to fly system thus it has been widely used to develop, implement and test-fly 

methods in control. A quadrotor is an aircraft that becomes airborne due to the lift force 

provided by four rotors usually mounted in cross configuration, hence its name. In this 

study, a quadrotor model is created based on Qball X4 quadrotor system which made by 

QuanserTM. 

Fault detection and identification is really important concept for the safety and reli-

ability of technical processes [1–4]. Model-based fault detection techniques gain lots of 

popularity in recent years due to advantages of the analytical redundancy. In these ap-

proaches, there is no additional cost and weight caused by hardware redundancy [5,6]. In 

addition to these, there are lots of studies dealing with the fault detection algorithms for 

quadrotor systems. Chamseddine, Zhang, Rabbath, Fulford and Apkarian worked on ac-

tuator fault-tolerant control (FTC) for Qball-X4. Their strategy is based on Model Refer-

ence Adaptive Control (MRAC). Three different MRAC techniques which are the MIT rule 
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MRAC, the Conventional MRAC (C-MRAC) and the Modified MRAC (M-MRAC) have 

been implemented and compared with a Linear Quadratic Regulator (LQR) controller [7]. 

Yu, Zhang, Minchala and Qu worked on, two control algorithms based on the linear quad-

ratic (LQ) technique of infinite time and finite time horizon applied to a quadrotor heli-

copter unmanned aerial vehicle (UAV) in the presence of actuator errors are applied and 

compared [8]. The specific control algorithms implemented are linear quadratic regulator 

(LQR) and model predictive control (MPC) to control the faulty and error-free quadrotor 

helicopter UAV test bed for both scenarios. Freddi, Longhi and Monteriù addressed the 

problem of fault detection and isolation (FDI) for a mini quadrotor. First a model for a 

four-rotor quadrotor is presented for a model obtained by a Lagrange approach. A control 

strategy based on PD (Proportional Derivative) controllers has been presented to stabilize 

quadrotor at low cruising speeds. Using Thau’s observer, a diagnostic system was devel-

oped for the nonlinear model of quadrotor [9]. 

In this paper, a new model-based fault detection algorithm including both Bayesian 

Network [10] and TSKF [11] is developed. For this purpose, firstly a Bayesian Network is 

proposed for the estimation of possible faults in the sensors. Then a TSKF algorithm is 

used to detect the fault in each sensor more robustly. To estimate the fault, residuals are 

used. While creating the residual signal, the sensor measurements and the synthetic data 

obtained by adding noise to the sensor measurements are used. After the residuals are 

created, fault estimation is determined using the Bayesian network. Then, in order to de-

termine fault more precisely the sensors with a high probability failure rate are inserted 

into the TSKF to obtain more accurate result. 

The remainder of this paper is structured as follows. In Section 2, dynamics and equa-

tions of the quadrotor is given. Then the fault diagnosis algorithms presented in Section 

3. In Section 4, the simulation results are presented and discussed in detail. 

2. Dynamics and Equations of the Quadrocopter 

2.1. Input Description 

The complete dynamics of an unmanned aerial vehicle is quite complex for the con-

trol purposes. For this reason, it is interesting to consider a simplified model for the quad-

rotor with a minimum number of states and inputs. Although, this model includes all of 

the basic features that must be considered when designing control laws. 

Quadrotor is controlled by the angular speeds of the four electric motors as shown in 

Figure 1. Each motor generates a thrust and a torque. Four control inputs as a function of 

torques and thrusts are defining as below: 

𝑢𝑧 = 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 

𝑢𝜃 = 𝐿(𝑇1 − 𝑇2) 

𝑢𝜙 = 𝐿(𝑇3 − 𝑇4) 

𝑢𝜓 = 𝜏1 + 𝜏2 − 𝜏3 − 𝜏4 

(1) 

where uz is the main thrust and uθ, uφ and uψ are applied pitch, roll and yaw moments, 

respectively. The main thrust is the sum of individual thrusts of each motor. The pitch 

torque is a function of the difference T1 − T2, the roll torque is a function of T3 − T4, and the 

yaw torque is the sum t1 + t2 − t3 − t4. The torque produced by each rotor is proportional to 

its thrust via the relation of ti = KψTi where Kψ is the constant of proportionality. 

Relation between the thrust and Pulse Width Modulation (PWM) input to each motor 

is approximated by a zero-order transfer function can be expressed as follows. 

[

𝑢𝑧

𝑢𝜃

𝑢𝜙

𝑢𝜓

] = [

𝐾 𝐾 𝐾 𝐾
𝐾𝐿 −𝐾𝐿 0 0
0 0 𝐾𝐿 −𝐾𝐿

𝐾𝐾𝜓 𝐾𝐾𝜓 −𝐾𝐾𝜓 −𝐾𝐾𝜓

] = [

𝑢1

𝑢2

𝑢3

𝑢4

] (2) 
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Figure 1. Schematic representation of a quadrocopter. 

2.2. Quadrotor Dynamics and Equations 

Using both Euler-Lagrange and Newton-Euler approach, it is possible to show that 

the dynamics of the quadrotor UAV can be defined as following nonlinear equations: 

(

 
 
 
 

𝑚�̈� = 𝑢𝑧(𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜓 + 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜓)

𝑚�̈� = 𝑢𝑧(𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜓 − 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜓)
𝑚�̈� = 𝑢𝑧(𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃) − 𝑚𝑔

𝐽1�̈� = 𝑢𝜃

𝐽2�̈� = 𝑢𝜙

𝐽3�̈� = 𝑢𝜓

 (3) 

where x, y and z are the coordinates of the quadrotor UAV center of mass in the earth-

frame. m: mass, θ: pitch, φ: roll, ψ: yaw. Euler angles respectively, and Ji (i = 1, 2, 3) are the 

moments of inertia along y, x, and z directions, respectively 

Table 1. Parameters Table [12]. 

Symbol Explanation Value 

K Thrust Gain 120 N 

L Distance from motor to center of gravity 0.2 m 

𝐾𝜑 Thrust to moment gain 4 N·m 

M Mass 1.4 kg 

G Gravitational acceleration 9.81 m/s2 

J1; J2; J3 Moments of Inertia 0.03; 0.03; 0.04 kg·m2 

2.3. Linearization and State Space Description 

In order to linearize the nonlinear Equations (3), it will fix around an equilibrium 

point. The state variables are defined as follows: 

�̱� = [𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7𝑥8𝑥9𝑥10𝑥11𝑥12]
𝑇 = [𝑥�̇�𝑦�̇�𝑧�̇�𝜃�̇�𝜑�̇�𝜓�̇�]𝑇 (4) 

that underline means the vector form. In addition to that, to define the equation in the 

linear state space form a nominal point is needed. Moreover, assuming that the quadrotor 

stays in predefined position with no yawing and small roll and pitch angles. Then, the 

nominal inputs are as shown: 
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[�̃�𝑧�̃�𝜃�̃�𝜙�̃�𝜓]𝑇 = [𝑚𝑔000]𝑇 (5) 

where “~” denotes the nominal value and g is the gravitational acceleration. Linearized 

state space A, B, C and D matrices are the Jacobian matrices calculated at the nominal 

points. 

�̱̇� = 𝐴�̱� + 𝐵�̱� 

�̱� = 𝐶�̱� + 𝐷�̱� 
(6) 

𝐴 =
𝜕𝑓

𝜕𝑥
(�̱̃�, �̱̃�, 𝑡), 𝐵 =

𝜕𝑓

𝜕𝑢
(�̱̃�, �̱̃�, 𝑡), 𝐶 = 𝐼12𝑥12, 𝐷 = 012𝑥4 (7) 

that I and 0 are the Identity and Zero matrices respectively. Let ui (PWM inputs to 

propellers) as inputs to the system using (2), (3), (4) linearized state space matrices become 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 𝑔 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −𝑔 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 

,  (8) 

  𝐵 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
𝐾

𝑚

𝐾

𝑚

𝐾

𝑚

𝐾

𝑚
0 0 0 0
𝐾𝐿

𝐽1

−𝐾𝐿

𝐽1
0 0

0 0 0 0

0 0
𝐾𝐿

𝐽2

−𝐾𝐿

𝐽2
0 0 0 0

𝐾𝐾𝜓

𝐽3

𝐾𝐾𝜓

𝐽3

−𝐾𝐾𝜓

𝐽3

−𝐾𝐾𝜓

𝐽3 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (9) 

Since, this study is based on discrete time domain, state space 

  𝐴𝑘 = 𝑒𝐴𝑇𝑠, 𝐵𝑘 = ∫ 𝑒𝐴𝜏𝑑𝜏𝐵
𝑇𝑆

0

 

𝐶𝑘 = 𝐼12𝑥12, 𝐷𝑘 = 012𝑥4 

(10) 

In the next section fault diagnosis algorithm is explained in detail. Firstly, Bayesian 

Network is explained. After the Bayesian Network explanation, the Kalman Filter and its 

equations are given. 

  

(8) (9) 
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3. Fault Diagnosis 

3.1. Fault Detection Using Bayesian Network 

In this part of the study, Bayesian Network is explained in general terms. The joint 

distribution of the Bayesian network is calculated using the chain rule [10]: 

𝑃(𝐴1,, 𝐴2, … , 𝐴𝑛) = ∏ 𝑃(𝐴𝑖|𝐴1, . , . , 𝐴𝑖−1)
𝑛
𝑖=1   (11) 

where 𝑃(𝐴1,, 𝐴2, . . . , 𝐴𝑛) is the joint distribution of all the variables, 𝐴𝑖 is the child node 

and 𝐴1, . . . , 𝐴𝑖−1 are the parents of the child node. The joint distribution of all the variables 

is equal to the product of each child 𝐴𝑖 with its parent nodes 𝐴1, . . . , 𝐴𝑖−1. The marginali-

zation of the joint probability distribution over the variables is given by (12) below: 

𝑃(𝐴1, 𝐴2 ) = ∑ 𝑃(𝐴1, 𝐴2, 𝐴3)

∀𝑎3∈𝐴3

 (12) 

Using Equations (11) and (12), and considering the conditional probability between 

each variable, fault diagnosis with Bayesian networks can be realized. Developing the 

conditional probability distributions (CPD) between the nodes are required to determine 

both the relationship between the nodes in the structure and to reflect the confidence in 

each value obtained from the node [10]. Within the generated structure shown in Figure 

2, each residual has its own CPD. To further demonstrate the association between CPDs 

and Bayesian network, consider the example network shown in Figure 3. In this case, each 

event and the outcome take on binary values, which can be thought of as a fault either 

being present or absent. Given two events A and B, by definition the conditional proba-

bility of A given B is: 

𝑃(𝐴|𝐵) =
𝑃(𝐴, 𝐵)

𝑃(𝐵)
 (13) 

In Figure 3, the structure of the residuals with Bayesian Network has shown. 

 

Figure 2. The structure of the residuals. 

As it can be seen from the Figure 3, a model has been constructed in which the roll 

and pitch angles are dependent on each other, and the positions (x, y and z) are independ-

ent of each other. In this Bayesian Network, default values are set for false positive and 

false negative results. These are 0.1 (𝛬𝑝 = 0.1) and 0.05 (𝛬𝑛 = 0.05), respectively. After 

setting these values, a threshold value is determined for each residual. Determination of 

this residual values threshold is explained in detailly in the Section 4. Using the CPD ta-

bles and residual values, a Bayesian Network structure is created. Determination of the 

fault based on whether the fault probability exceeds this threshold or not. In the next sec-

tion, equation of the TSKF is explained. In addition to that, how fault detection is made 

more robust is mentioned. 
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3.2. Fault Detection Using Kalman Filter 

When looking at the Bayesian Network, it is seen that it is so difficult to distinguish 

sensor fault from each other, especially when a fault occurs in the psi and theta sensors. 

Because these angle values are coupled with each other. A fault in one affects the other. 

For this reason, the sensor values with a high probability of fault will be given to the Kal-

man Filter, and it will be possible to determine whether there is a malfunction in that 

sensor. The first of the most important advantage is fault identification will do more pre-

cisely and there will be no problem in terms of calculation cost by running the TSKF since 

only the high probability of failure value sensor are using. 

In this section, TSKF is used for the fault detection algorithm. A discrete linear time-

varying state-space model is used to describe dynamic system as following [11]: 

  𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘
𝑥 

𝑦𝑘+1 = 𝐶𝑘𝑥𝑘+1 + 𝑣𝑘+1  
(14) 

where xk ∈ Rn, uk ∈ Rl and yk+1 ∈ Rm ∈ are the state, control input and output variables, 

respectively. Wkx and vk+1 are uncorrelated Gaussian random vectors with zero means and 

covariance matrices Qxk and Rk, respectively. The bias augmented discrete linear state-

space model is written as: 

 𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 − 𝐵𝑘𝑈𝑘𝛾𝑘 + 𝑤𝑘
𝑥 

𝛾𝑘+1 = 𝛾𝑘 + 𝑤𝑘
𝛾 

𝛾𝑘+1 = 𝐶𝑘𝑥𝑘+1 + 𝑣𝑘+1 

(15) 

The optimal bias estimator written as follows: 

𝛾𝑘+1|𝑘 = 𝛾𝑘|𝑘 

𝑃𝑘+1|𝑘
𝛾

= 𝑃𝑘|𝑘
𝛾

+ 𝑄𝑘
𝑦

 

𝛾𝑘+1|𝑘+1 = 𝛾𝑘+1|𝑘 + 𝐾𝑘+1
𝛾

(�̄�𝑘+1 − 𝐻𝑘+1|𝑘𝛾𝑘|𝑘) 

𝐾𝑘+1
𝛾

= 𝑃𝑘+1|𝑘
𝛾

𝐻𝑘+1|𝑘(𝐻𝑘+1|𝑘𝑃𝑘+1|𝑘
𝛾

𝐻𝑇
𝑘+1|𝑘 + �̄�𝑘+1)

−1 

𝑃𝑘+1|𝑘+1
𝛾

= (𝐼 − 𝐾𝑘+1
𝛾

𝐻𝑘+1|𝑘)𝑃𝑘+1|𝑘
𝛾  

(16) 

The Bias-free state estimator can be expressed as follows: 

�̃�𝑘+1|𝑘 = 𝐴𝑘�̃�𝑘|𝑘 + 𝐵𝑘𝑢𝑘 + 𝑊𝑘𝛾𝑘|𝑘 − 𝑉𝑘+1|𝑘𝛾𝑘|𝑘 

�̃�𝑘+1|𝑘
𝑥 = 𝐴𝑘�̃�𝑘|𝑘+

𝑥 𝐴𝑘
𝑇 + 𝑄𝑘

𝑥 + 𝑊𝑘𝑃𝑘|𝑘
𝛾

𝑊𝑘
𝑇 − 𝑉𝑘+1|𝑘𝑃𝑘+1|𝑘

𝛾
𝑉𝑇

𝑘+1|𝑘 

�̃�𝑘+1|𝑘+1 = �̃�𝑘+1|𝑘 + 𝐾𝑘+1
𝑥 (𝑦𝑘+1 − 𝐶𝑘+1�̃�𝑘+1|𝑘) 

𝐾𝑘+1
𝑥 = �̃�𝑘+1|𝑘

𝑥 + 𝐶𝑘+1
𝑇 (𝐶𝑘+1�̃�𝑘+1|𝑘

𝑥 𝐶𝑘+1
𝑇 + 𝑅𝑘+1)

−1 

�̃�𝑘+1|𝑘+1
𝑥 = (𝐼 − 𝐾𝑘+1

𝑥 𝐶𝑘+1)�̃�𝑘+1|𝑘
𝑥  

(17) 

The filter residual and covariance equations written as below. 

�̃�𝑘+1 = 𝑦𝑘+1 − 𝐶𝑘+1�̃�𝑘+1|𝑘 

�̃�𝑘+1 = 𝐶𝑘+1�̃�𝑘+1|𝑘
𝑥 𝐶𝑘+1

𝑇 + 𝑅𝑘+1 
(18) 

The coupling equations can be expressed as below 

𝑊𝑘 = 𝐴𝑘𝑉𝑘|𝑘 − 𝐵𝑘𝑈𝑘 

𝑉𝑘+1|𝑘 = 𝑊𝑘𝑃𝑘|𝑘
𝛾

(𝑃𝑘+1|𝑘
𝛾

)−1 

𝐻𝑘+1|𝑘 = 𝐶𝑘+1𝑉𝑘+1|𝑘 

𝑉𝑘+1|𝑘+1 = 𝑉𝑘+1|𝑘 − 𝐾𝑘+1
𝑥 𝐻𝑘+1|𝑘  

(19) 
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The compensated error and covariance estimator written as: 

�̂�𝑘+1|𝑘+1 = �̃�𝑘+1|𝑘+1 + 𝑉𝑘+1|𝑘+1𝛾𝑘+1|𝑘+1 

𝑃𝑘+1|𝑘+1 = �̃�𝑘+1|𝑘+1
𝑥 + 𝑉𝑘+1|𝑘+1𝑃𝑘+1|𝑘+1

𝛾
+ 𝑉𝑘+1|𝑘+1

𝑇  
(20) 

The block diagram of TSKF, whose equations are given, is given below (Figure 3). In 

the next section, simulation results will be explained. 

 

Figure 3. TSKF Block Diagram. 

4. Simulation System and Results 

4.1. Simulation System 

The fault diagnosis algorithm is tested by using the synthetic data. This data created 

in the SimulinkTM environment. The Bayesian Network and TSKF structure implemented 

in the Simulink environment. Figure 3 illustrate the model block diagrams for the quad-

rotor equations, TSKF and Bayesian Network respectively. 

  

Figure 4. Quadrotor System and TSKF Equations. 
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4.2. Results and Discussion 

The results are generated using the simulation system described in the previous sec-

tion. The first of the results obtained are residual values of each sensor. This is shown in 

Figure 5 below. 

  

Figure 5. Residual Values for the sensors. 

As shown in Figure 5, it is seen that x, y and z values are close to each other and theta 

and psi values are close to each other. The maximum value of the calculated residual val-

ues is chosen 0.25 for x, y and z values. For the theta and psi angle, the maximum threshold 

values are 0.08. Since it is assumed that there is no malfunction in the system, the threshold 

value for each residual is determined to 0.25 for x, y, z and 0.08 for theta and psi, respec-

tively. 

Test Cases 

The test case results are generated using the simulation system described in the pre-

vious section 

(a) No Fault 

When there is no malfunction in the system, it can be easily seen from the Figure 6 

that the probability of failure calculated with Bayesian Network is quite small. 

 

Figure 6. Bayesian Fault Probability (No Fault). 



Eng. Proc. 2022, 4, x FOR PEER REVIEW 9 of 11 
 

 

(b) Theta Angle Sensor Fault 

In cases where the residual values of R4 and R5 exceed the threshold value which 

shown in Table 2, it can be detected that there is a fault in the theta and psi angle when 

we look at Figure 7. However, only theta angle sensor is manually faulted between 20–30 

s. Since this situation cannot be distinguished by the Bayesian Network, the faulty sensors 

inserted into the TSKF, and it can be easily understood by looking at the Figures 8–10 that 

theta sensor is really faulty. 

Table 2. Residual Threshold Values. 

Residual Threshold Value 

R1, R2, R3 0.25 

R4, R5 0.08 

 

Figure 7. Bayesian Fault Probability (Theta Angle Fault). 

 

Figure 8. Psi Angle Measured and Kalman Value. 
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Figure 9. Phi Angle Measured and Kalman Value. 

 

Figure 10. Theta Angle Measured and Kalman Value. 

5. Conclusions 

In this paper, a model-based fault diagnostic method is presented which is capable 

of determining the faults using both Bayesian Network and TSKF. With the Bayesian Net-

work, it was possible to detect which sensors are faulty. Although, since some sensors are 

coupled with each other, there are some cases where the faults cannot be separated. At 

this point, fault detection can be performed more accurately by using TSKF structure de-

scribed in this study. In addition, this TSKF structure provides a computational gain be-

cause it works only for sensors that are detected as faulty with Bayesian Network. 

The implementation of the fault detection structure is carried out using synthetic test 

data and tests of the algorithm are done in MATLAB/Simulink environment. The results 
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show us that, the fault detection algorithm is able to detect the corresponding faults cor-

rectly when the residuals are manually triggered. In addition, it gives precise results by 

using Bayesian and TSKF together. In the future, it is aimed to collect real test data and to 

make the threshold values more robust. 
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