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Abstract: Brain cancer is one of the most dangerous cancer types in the world, and thousands of
people are suffering from malignant brain tumors. Depending on the level of cancer, early diagnosis
can be a lifesaver. However, thousands of scans must be studied in order to classify tumor types
with high accuracy. Deep learning models can handle that amount of data and they can present
results with high accuracy. It’s already known that deep learning models can give different results
depending on dataset. In this paper, the effectiveness of some of the deep learning models on 2
different publicly available MRI (Magnetic Resonance Imaging) brain tumor datasets is examined.
The reason for choosing this topic is that we are trying to find the best solution to classify tumors in
the datasets. Different deep learning models are used separately on preprocessed datasets with the
CLAHE preprocessing variable to extract features from images and classify them. Datasets are shuf-
fled randomly for 80% training, 10% validation, and 10% testing. For finetuning, models are modi-
fied so that the output channel of the classifier is equal to the number of classes in the datasets.
Results show that pre-trained and fine-tuned ResNet, RegNet, and Vision Transformer (ViT) deep
learning models can achieve accuracies higher than 90% and they can be used as classifiers when
diagnosis is required.
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1. Introduction

Brain is the most complex organ in vertebrates and it locates in the center of the nerv-
ous system [1]. Tumor types in brain can be mainly classified as benign and malignant
tumors. Also, brain tumors can be classified as primary and secondary. Tumors that start
to grow in the tissue of the brain are named as primary brain tumors and if neoplasm has
grown in another organ and then affected the brain, that type of tumors are called as sec-
ondary brain tumors [2]. The most common primary brain tumors are meningiomas (re-
ferred as meningioma tumor), pituitary adenomas (referred as pituitary tumor) and as-
troglial neoplasms (including glioblastoma and referred as glioma tumor) [3]. Treatments
are dependent to patient but common treatment techniques for primary brain tumors are
multimodality treatments, radiation and chemotherapy [4].

Although there are many types of benign and malignant tumors, the most common
ones are meningioma, glioma, and pituitary. Meningioma tumor forms in the thin layers
of tissue which cover the spinal cord and brain [5]. Gliomas are tumors that are thought
to derive from neuroglial stem or progenitor cells [6]. They comprise 80% of all malignant
brain tumors [7]. Pituitary adenomas are tumors of the anterior pituitary and most of them
are benign and slow-growing [8].
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In this study, classification of MR images into 4 different tumor classes, normal and
3 different abnormal brain tumor classes, was carried out. Meningioma, glioma and pitu-
itary are the abnormal classes.

2. Related Works

There are many studies have done on brain tumor images with deep learning models
in literature. Rajat et. al. have obtained 99.04% binary classification accuracy with their
pretrained AlexNet model on a public dataset obtained from The Cancer Imaging Archive
(TCIA). The F1-scores of their model for benign and malignant tumors are 0.985075 and
0.992958, respectively [9]. Jianfeng et. al. have obtained 94.82% accuracy and 89.52% pre-
cision on multiclass malignant tumor classification of randomly divided CE-MRI dataset
with VGG19 model [10]. Javed et. al. used Inceptionresnet V2 model and acquired 98.91%
accuracy and 98.28% precision. Their study on a publicly available Kaggle dataset consists
of malignant tumor classification [11]. Arshia et. al. studied on publicly available Figshare
dataset which consists meningioma, pituitary, and glioma tumor classes. They obtained
98.69% test accuracy with fine-tune VGG16 model, data augmentation, and SGDM opti-
mizer [12]. In another study, Mohamed et. al. used a custom dataset which has 155 tumor
and 98 non-tumor brain images. They augmented the dataset to 1516 images and acquired
the best accuracy of 98.24% with MobileNet V2 [13].

In the literature, it is seen that especially ResNet50, VGG16, and Inception v3 deep
learning models are used to classify obtained MR brain tumor images from different hos-
pitals. In this study, classification processes were done with 3 different deep learning
models and preprocessing variable on open-access randomly distributed train, validation,
and test datasets, which are different from the literature.

3. Materials and Methods

2 different datasets which are available open-access on the Kaggle platform are used
for multiclass classification of MR brain images. Classes, percentages and quantities of
datasets can be seen in the table below.

Table 1. Information about DS-1 (Dataset-1).

Classes Train Split Validation Split  Test Split Total
Normal 328 28 40 396
Meningioma 733 98 106 937
Glioma 752 95 79 926
Pituitary 715 95 91 901
Total 2528 (80%) 316 (10%) 316 (10%) 3160

Table 2. Information about DS-2 (Dataset-2).

Classes Train Split Validation Split Test Split Total
Normal 1587 215 198 2000
Meningioma 1297 174 174 1645
Glioma 1334 143 144 1621
Pituitary 1401 170 186 1757
Total 5619 (80%) 702 (10%) 702 (10%) 7023

In this study, ResNet50, RegNetY_16GF and VisionTransformer_L_16 deep learning
based models have been used for the classification process. All information about models
and customizations is given below.

ResNet50 used as first model in this study. Residual Networks can be used as image
classifiers. Architecture consists of sequential layers, and these layers contain bottleneck
blocks [14]. In Torchvision Library, the bottleneck blocks assigned the downsampling
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Datasets
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strides to the second 3 x 3 convolution, whereas the original paper assigned it to the first
1 x 1 convolution [15]. Last fully connected (FC) layer originally working to classify images
into 1000 categories, but datasets have 4 categories (normal, meningioma, glioma, and
pituitary). Therefore, the last FC layer’s output features are customized to number of clas-
ses.

RegNetY_16GF used as second model in this study. RegNet is a product of design
spaces [16]. All RegNet models have stem, layer, and head blocks. These blocks can be
customized with parameters. Stem layer is a Convolution + Batch Normalization + ReLU
block. For this layer stride and filter size are 2 and 3, respectively. Layer block consists of
chains of residual blocks. Residual blocks contain of bottleneck blocks as in ResNet but
RegNetY model has squeeze and excitation attention module. Finally, head block contains
AveragePool2D and FC layer. Similarly, output features customized to number of classes.

VisionTransformer_L_16 (ViT) used as third and the last model. ViT uses different
deep learning method called transformer [17]. Encoders are the main blocks and they have
multiple layers. Each block consists of three elements: Layer Norm, Multi-head Attention,
and Multi-Layer Perceptrons. Like other 2 model, head of model customized as the output
features equal to the number of classes.

In the training part, datasets are fed into models where preprocessing is variable.
Figure 1 shows the major processes of the training part.

\ Predicted Classes
[N Model Training Calculation of

Preprocessing = & .- e et
Validation b 4 Other Metrics
Figure 1. Training Diagram of the Models.

For training and testing, Pytorch implementations of models are used. Training is
partially done by HPC sources. Information about hardware can be seen in Table 3.

Table 3. Information about hardware.

CPU GPU Memory 0S
Intel Xeon Scalable Gold 6148 2 X Nvidia Tesla V100
(20 cores used) 16 GB

170 GB CentOS 7.3

Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocess has been
applied to RGB images by converting the color format from BGR to LAB and then apply-
ing CLAHE on the L channel with a custom clip limit and tile grid size. An example of the
CLAHE process can be seen in Figure 2.

CLAHE off CLAHE on

Figure 2. An example of CLAHE process.
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4. Results

The obtained results are presented in the tables below. In Table 4, it is seen that the
highest accuracy on DS-1 has been acquired with the RegNet model with preprocessing.
In Table 5, it can be seen that both VisionTransformer (ViT) and ResNet models have ac-
quired the same accuracy, and preprocessing has not been applied to DS-1. Similarly, Ta-
ble 6 shows that the best accuracy has been acquired with ResNet and RegNet models on
DS-2 with preprocessing. Lastly, Table 7 shows that ResNet 50 has the best accuracy on
DS-2 without preprocessing.

Table 4. Results for Various Models on DS-1 with CLAHE preprocess.

Model Accuracy Precision Recall F1 Score
ResNet50 0.94937 0.94 0.94 0.94
RegNetY_16GF 0.96519 0.96 0.96 0.96
VisionTrans-
former L_16 0.9557 0.95 0.95 0.95

Table 5. Results for Various Models on DS-1 without CLAHE preprocess.

Model Accuracy Precision Recall F1 Score
ResNet50 0.95253 0.95 0.94 0.95
RegNetY_16GF 0.93354 0.93 0.93 0.93
VisionTransformer_L_16 0.95253 0.95 0.94 0.95

Table 6. Results for Various Models on DS-2 with CLAHE preprocess.

Model Accuracy Precision Recall F1 Score
ResNet50 0.99288 0.99 0.99 0.99
RegNetY_16GF 0.99288 0.99 0.99 0.99
VisionTransformer_L_16 0.9886 0.99 0.99 0.99

Table 7. Results for Various Models on DS-2 without CLAHE preprocess.

Model Accuracy Precision Recall F1 Score
ResNet50 0.9943 0.99 0.99 0.99
RegNetY_ 16GF 0.99145 0.99 0.99 0.99
VisionTransformer_L._16 0.99003 0.99 0.99 0.99

5. Conclusions and Future Work

In the scope of this work, MR brain images are classified with various deep learning
models, and it is observed that the Contrast Limited Adaptive Histogram Equalization
(CLAHE) preprocess has positive effects on some of the models and datasets. Classifica-
tion results are highly dependent on used dataset and deep learning model. As a result of
multiclass classification study, the highest accuracy and recall on DS-1 have been 96.519%
and 96%, respectively, and these results have been achieved with the RegNetY_16GF
model. For DS-2, the best model has been ResNet50. Furthermore, accuracy and recall
have been 99.43% and 99%, respectively. The best results on DS-1 have been achieved with
the CLAHE preprocess. In contrast, the CLAHE did not improve results on DS-2.

In future work, a hybrid system can be developed to assist physicists who are work-
ing in this field. Machine learning (ML) algorithms can be an addition to deep learning
models in this system.
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