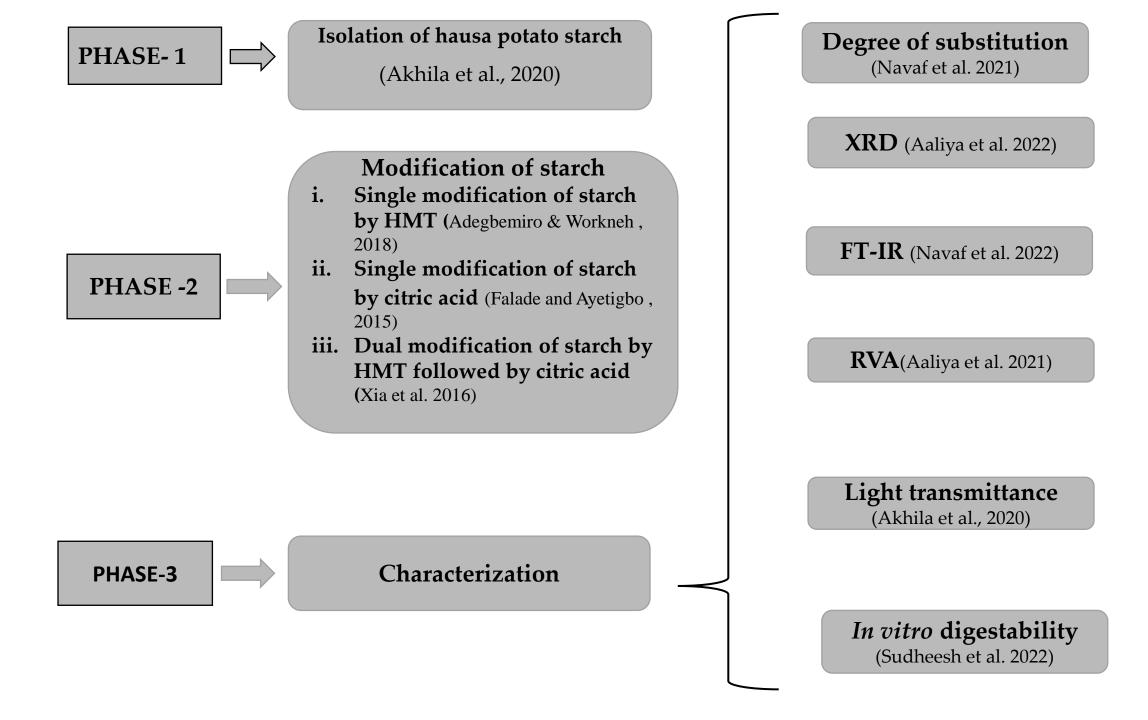
IECBM 2022

The 2nd International Electronic Conference on Biomolecules: BIOMACROMOLECULES AND THE MODERN WORLD CHALLENGES 01–15 NOVEMBER 2022 | ONLINE

Presented By, Akhila P P Research Scholar Supervisor: Dr. K V Sunooj Department of Food Science And Technology Pondicherry University

The effect of heat-moisture treatment (HMT) on the structural, functional properties and digestibility of citric acid-modified *Plectranthus rotundifolius* (Hausa potato) starch

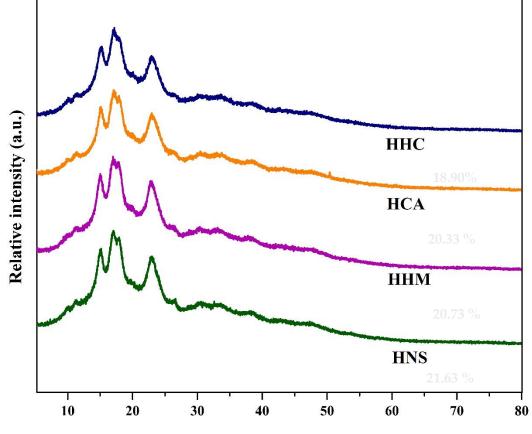

Introduction

- Starch is a naturally abundant biopolymer found in the plant
- Hausa potato (*Plectranthus rotundifolius*) tuber is a non-conventional source of starch.
- Starch has been modified to achieve its industrial need by physical, chemical, and enzymatic methods.
- HMT is the cheapest method that alters the crystalline and amorphous area of starch by treating it at high temperature (90–120 °C) with a moisture content of 20–35 % for a specific period to starch
- Citric acid esterification promotes the usage of green chemicals and confers unique physicochemical properties to starches

Objectives

- ✤ To isolate Hausa potato starch from Hausa potato (*Plectranthus rotundifolius*)
- ✤ To modify the Hausa potato starch by HMT and citric acid
- ✤ To dual modify the Hausa potato starch by HMT-citric acid.
- ✤ To study the physicochemical characterization of modified starch

Plan of work

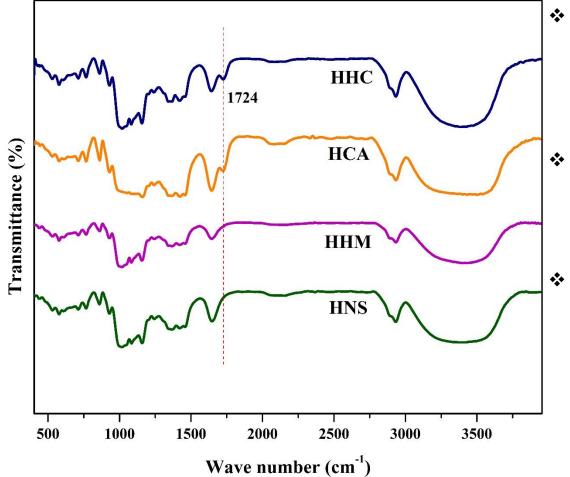

Result and discussion

Samples	Degree of substitution
HNS	
HHM	
HCA	0.112 ± 0.013^{a}
ННС	0.135± 0.051 ^b

HNS- native Hausa potato starch, HHM-HMT modified Hausa potato starch, HCAcitric acid modified Hausa potato starch, HHC– HMT-citric acid-modified Hausa potato starch.

- The DS describes the number of substituted functional groups that exist per unit of anhydrous glucose.
- ♦ HHC showed a significantly (p ≤ 0.05)
 higher DS compared to HCA

X-ray diffraction and relative crystallinity



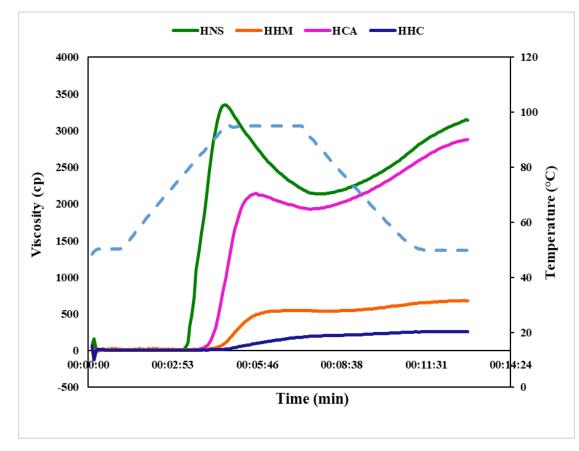
Diffraction angle 20 (°)

- ✤ A-type diffraction pattern
- ✤ All modification significantly decreases the RC %

Samples	Relative crystallinity (%)	
HNS	21.63 ± 0.21^{d}	
HHM	$20.73 \pm 0.15^{\circ}$	
HCA	20.33 ± 0.06^{b}	
ННС	18.90 ± 0.08^{a}	

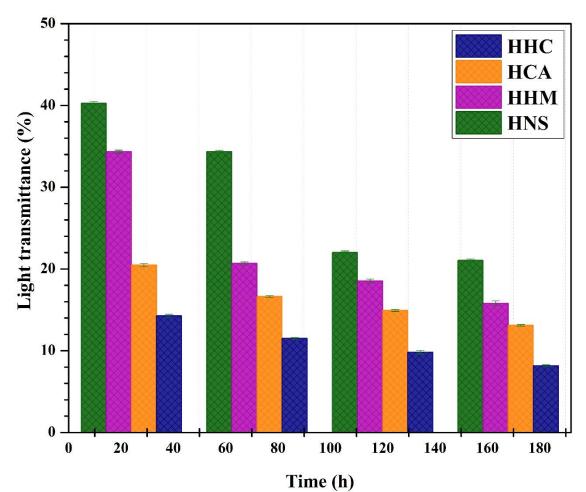
Fourier transform infrared spectroscopy (FT-IR)

- Hausa potato starch showed Major peaks including
 O-H group broad peak at 3365 cm⁻¹
 C-H₂ group 2931 cm⁻¹
 H-O-H bending vibration at 1646
- The peaks at 921 cm⁻¹, 1018 cm⁻¹, 1084 cm⁻¹, and 1160 cm⁻¹ representing the contraction and expansion of the C–O–C bond in the glucose pyranose ring


cm⁻¹

 HCA and HHC exhibited a new peak at 1724 cm⁻¹, representing the C=O stretching group

Samples	T _o (°C)	T _p (°C)	T _c (°C)	ΔH (J/g)
HNS	68.18 ± 0.02^{a}	73.04 ± 0.19^{a}	88.23 ± 0.03^{a}	11.12 ± 0.15^{d}
HHM	68.89 ± 0.10^{b}	74.22 ± 0.23^{b}	89.41 ± 0.19^{b}	$10.78 \pm 0.02^{\circ}$
HCA	$69.53 \pm 0.06^{\circ}$	$74.81 \pm 0.04^{\circ}$	$90.22 \pm 0.07^{\circ}$	8.76 ± 0.09^{b}
ННС	70.18 ± 0.15^{d}	75.06 ± 0.07^{d}	90.94 ± 0.04^{d}	6.57 ± 0.05^{a}


♦ After citric acid treatment, the enthalpy of gelatinization was significantly reduced ($p \le 0.05$) and increased gelatinization transition temperature for HCA and HHC.

Pasting profile

- Native Hausa potato starch exhibited remarkably higher (p ≤ 0.05) peak, breakdown, final, and setback viscosities than modified starches.
- HHM starches had a higher PT (85.8
 C) than HNS starches (78.40 °C).
- The substitution of citrate prevents starch from swelling and gelatinizing during RVA analysis in HCA and HHC samples

Light transmittance

- All the Hausa potato starch samples showed a decreased light transmittance percentage with storage time due to the turbidity formation in the starch gel
- The HHC samples exhibited the lowest light transmittance among the samples due to the higher number of bulkier citrate group

In vitro digestibility

Samples	RDS (%)	SDS (%)	RS (%)
HNS	29.31 ± 0.24^{d}	33.61 ± 0.15^{a}	37.07 ± 0.11^{a}
HHM	$26.12 \pm 0.12^{\circ}$	34.03 ± 0.08^{b}	39.82 ± 0.15^{b}
HCA	25.24 ± 0.18^{b}	$34.89 \pm 0.09^{\circ}$	$40.12 \pm 0.21^{\circ}$
ННС	20.16 ± 0.11^{a}	36.10 ± 0.14^{d}	44.05 ± 0.03^{d}

- Retrogradation mechanism by purposeful alteration or processing of the HHM led to a significantly higher RS compared to HNS
- Citric acid-modified starches, HCA and HHC showed improved SDS and RS and a decrease in RDS
- Crosslinking and steric hindrance of the bulker citrate group led to resistance to the enzymatic hydrolysis, thereby increasing digestion time and high RS and SDS percentage

Conclusion

- The study of Hausa potato starch properties was affected differently by HMT, citric acid, and dualmodified starches.
- DS, thermal analysis, and FT-IR study suggested that citrate esterification significantly improved by HMT in HHC.
- The citrate esterified single and dual modified samples had a lower enthalpy of gelatinization, and light transmittance than that of native and HMT-modified starches.
- Reduced viscosities resulting from all the starch modifications are significant quality considerations that can encourage their use in processed meats, sweets, and imitation cheese.
- The study enables safe and green modification of starches with improved characteristics and can be easily applied in food and pharmaceutical.
- The increased DS and RS content of the HHC suggests that the HMT served as a pre-treatment and favored the production of the citrate starch. The dual-modified Hausa potato having a high amount of RS can easily be exploited in food and non-food sectors.

References

- 1. Adegbemiro, B., & Workneh, T. S. (2018). Structural and physicochemical properties of heat moisture treated and citric acid modi fi ed acha and iburu starches. *Food Hydrocolloids*, *81*, 449–455. <u>https://doi.org/10.1016/j.foodhyd.2018.03.027</u>
- Akhila, P. P., Sunooj, K. V., Aaliya, B., Navaf, M., Sudheesh, C., Yadav, D. N., Khan, M. A., Mir, S. A., & George, J. (2022). Morphological, physicochemical, functional, pasting, thermal properties, and digestibility of Hausa potato (Plectranthus rotundifolius) flour and starch. *Applied Food Research*, 2(2), 100193. <u>https://doi.org/10.1016/j.afres.2022.100193</u>
- Aaliya, B., Sunooj, K. V., Rajkumar, C. B. S., & Navaf, M. (2021). Effect of Thermal Pretreatments on Phosphorylation of Corypha umbraculifera L. Stem Pith Starch: A Comparative Study Using Dry-Heat, Heat-Moisture and Autoclave Treatments. *Polymers*, 13(21), 3855. https://doi.org/https://doi.org/10.3390/polym13213855
- 4. Falade, K. O., & Ayetigbo, O. E. (2015). Effects of annealing, acid hydrolysis and citric acid modifications on physical and functional properties of starches from four yam (Dioscorea spp.) cultivars. *Food Hydrocolloids*, *43*, 529–539. <u>https://doi.org/10.1016/j.foodhyd.2014.07.0</u>
- 5. Xia, H., Li, Y., & Gao, Q. (2016). Preparation and properties of RS4 citrate sweet potato starch by heat- moisture treatment. *Food Hydrocolloids*, 55, 172–178. https://doi.org/10.1016/j.foodhyd.2015.11.008

- Aaliya, B., Sunooj, K. V., Rajkumar, C. B. S., Navaf, M., Akhila, P. P., Sudheesh, C., George, J., & Lackner, M. (2021). Effect of Thermal Pretreatments on Phosphorylation of Corypha umbraculifera L. Stem Pith Starch: A Comparative Study Using Dry-Heat, Heat-Moisture and Autoclave Treatments. *Polymers*, *13*(21), 3855. <u>https://doi.org/https://doi.org/10.3390/polym13213855</u>
- 7. Navaf, M., Sunooj, K. V., Aaliya, B., Sudheesh, C., Akhila, P. P., Sabu, S., Sasidharan, A., & George, J. (2021). Talipot palm (Corypha umbraculifera L.) a nonconventional source of starch: Effect of citric acid on structural, rheological, thermal properties and in vitro digestibility. *International Journal of Biological Macromolecules*, 182, 554–563. <u>https://doi.org/10.1016/j.ijbiomac.2021.04.035</u>
- 8. Navaf, M., Sunooj, K. V., Aaliya, B., Sudheesh, C., Akhila, P. P., Sabu, S., Sasidharan, A., & George, J. (2022). Impact of gamma irradiation on structural, thermal, and rheological properties of talipot palm (Corypha umbraculifera L.) starch: a stem starch. *Radiation Physics and Chemistry*, 201, 110459. https://doi.org/10.1016/j.radphyschem.2022.110459
- Sudheesh, C., Sunooj, K. V., Aaliya, B., Navaf, M., Akhila, P. P., Ahmad, S., Sabu, S., Sasidharan, A., Sudheer, K. P., Sinha, S. K., Sajeevkumar, V. A., & George, J. (2023). Effect of energetic neutrals on the kithul starch retrogradation; Potential utilization for improving mechanical and barrier properties of films. *Food Chemistry*, 398, 133881. https://doi.org/10.1016/j.foodchem.2022.13