Abstract

Biotechnological Complex Based on Lipase and β-Cyclodextrin on Hydrolysis of Acylglycerides in Plant Oils and Fats ⁺

Viktor Andreevich Filatov ^{1,*} and Grigoriy Gennadevich Evseev ^{2,*}

- $^{\rm 1}$ $\,$ Lomonosov Moscow State University, Lomonosovsky Avenue 27/1, 119991 Moscow, Russian
- ² SkyLab AG, Rue du Grand-Chêne 5, 1003 Lausanne, Switzerland
- * Correspondence: filatovviktor097@gmail.com (V.A.F.); evseev@splat.ru (G.G.E.)
- + Presented at the 2nd International Electronic Conference on Biomolecules: Biomacromolecules and the Modern World Challenges, 1–15 November 2022; Available online: https://iecbm2022.sciforum.net/.

Abstract: The present study aimed to evaluate in vitro enzymatic activity of a novel biotechnological active complex based on natural origin compounds—thermophilic lipase and β -cyclodextrin—for hydrolysis of acylglycerides in plant oils and fats. β -cyclodextrin (β -CD) as an additive has attracted attention for enhance stability and efficiency of enzymes. In present study, the effects of β -CD on enzymatic hydrolysis of acylglycerides by thermophilic lipase were investigated by modern methods. The UV-spectroscopy, electron microscopy with TEM and kinetics of enzymatic hydrolysis were compared by the addition of β -CD, respectively. The results showed that lipase could produce the highest yield of oleic acid in presence of β -CD after 1 and 3 h. The UV spectroscopy demonstrated that the absorbance and fluorescence of lipase decreased with increasing concentration of β -CD due to surface interaction and change of enzyme configuration. Moreover, electron microscopy with TEM showed that lipase formed a special active conglomerate with β -CD for improving hydrolysis and stability. Dermatology evaluation indicated that complex added to household products didn't affect sensitive skin of hands. Overall results indicate that β -CD could increase enzymatic activity of the lipase against acylglycerides and can be considered as promising composition in ecological household products for regular hand application.

Keywords: lipase; β -cyclodextrin; biocomplex; synergy; acylglycerides

Author Contributions: Funding: Institutional Review Board Statement: Informed Consent Statement: Data Availability Statement: Conflicts of Interest:

rum **2022**, 2, x. https://doi.org/10.3390/xxxxx Academic Editor(s): Published: date

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

