

¹Tanmay Arekar, *¹Mala M Parab, ²Viraj J Sadrani, ²Priyanshu P Gupta, ¹Debjani Dasgupta, *¹Pramodkumar P Gupta

¹School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Maharashtra, India ²Seven Star Lab, Mira Road, Thane, Maharashtra, India

Corresponding author: Mala M Parab, (malaparab@gmail.com / mala.parab@dypatil.edu)

Pramodkumar P Gupta, (pramodkumar785@gmail.com / pramod.gupta@dypatil.edu)

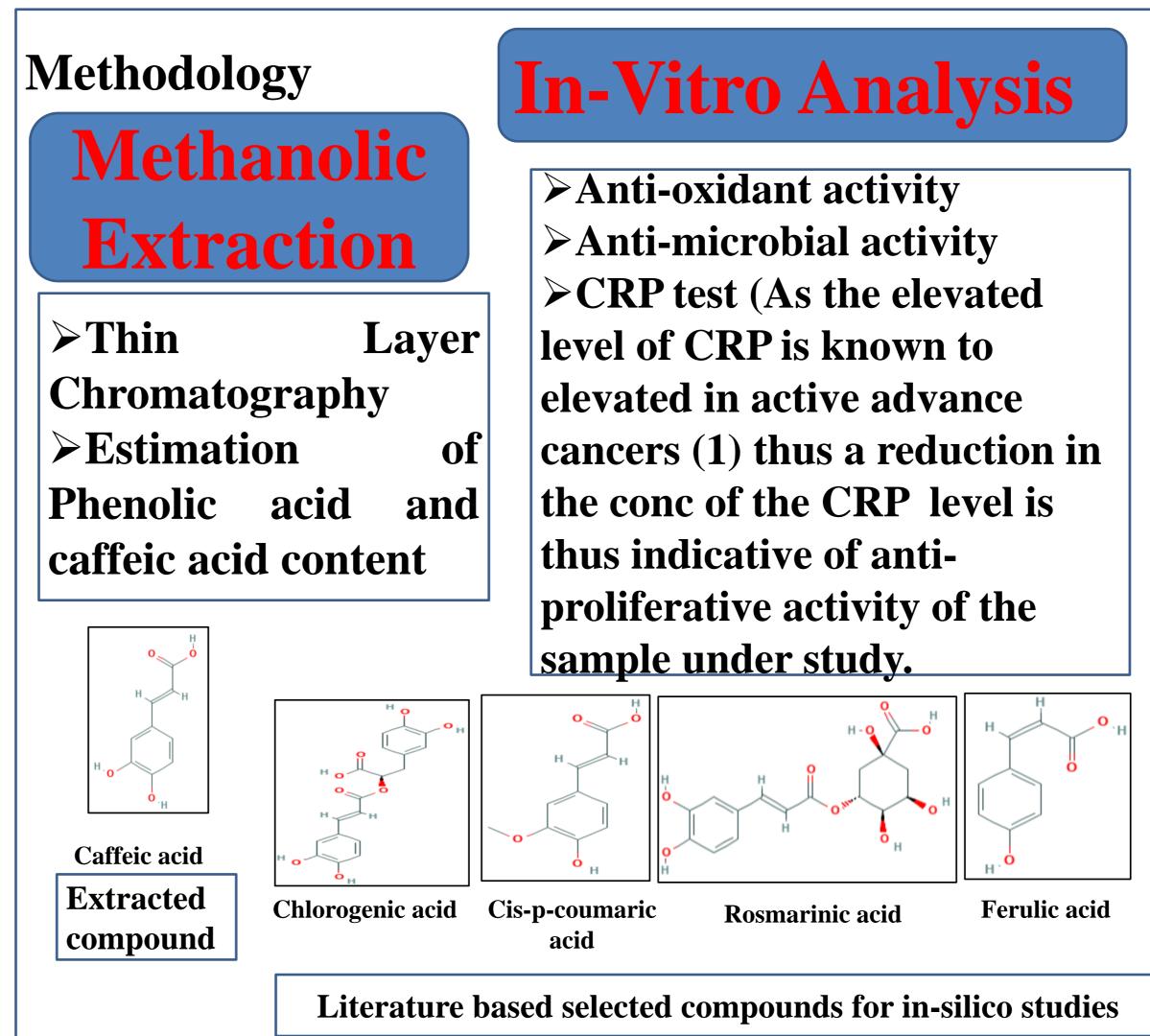
Abstract:

Nutraceutical is a field of treatment which is gained more attention from people in recent times. Dietary polyphenols, as a part of nutraceutical products, constitute two groups. Hydroxycinnamic acid is one of those two groups. These acids are found naturally in various products we consume on a day-to-day basis. Coffee is one of the most common sources of hydroxycinnamic acids. Cinnamon is a spice that is consumed in different forms in various food products. The study presented investigates their capacity as anti-oxidant agents and anti-microbial agents through in-vitro and in-silico approaches. For this, commonly found infectious organisms namely, E. coli, and S. aureus were cultured. The minimum inhibitory concentration for methanolic coffee extract as well as methanolic cinnamon extract was estimated to be ~0.4 ug/ml and ~5 ug/ml. The cytotoxicity effect of these extracts was studied on cell line ie. MCF-7 (human breast cancer cell line). IC50 values for MCF-7 were calculated at 64.04 µg/ml for coffee extract, 81.12 µg/ml for cinnamon extract, and 51.14 µg/ml for standard caffeic acid. Molecular docking analysis revealed the efficiency of different hydroxycinnamic acids on protein receptors namely, PPARy, IL-6, TNF- alpha, and VEGFR. These results were supported by the tests performed on blood cultures and human blood samples obtained from the clinical partner. The present study endeavors to lay a preliminary platform to understand the efficiency and efficacy of hydroxycinnamic acid derivatives in commonly used food sources.

Background

- Indian nutraceutical market is expected to grow at a compounded annual growth rate of 21 percent and reach \$10 billion by the end of 2022 and \$18 by year 2025 as more people become conscious towards their health and fitness.
- Hydroxycinnamic acids are one of the most widely distributed naturally occurring phenolic acids possessing high *in-vitro* antioxidant activity.
- Data from various studies in recent decade has shown their beneficial properties.
- While all of them can be prepared synthetically, yield obtained from the process is lesser than the natural compounds.
- Extracting the compounds from food sources is cheaper, easier and yield is more stable than the ones prepared synthetically.
- Exploring this potential of hydroxycinnamic acid derivatives was the main goal of the study.

extract

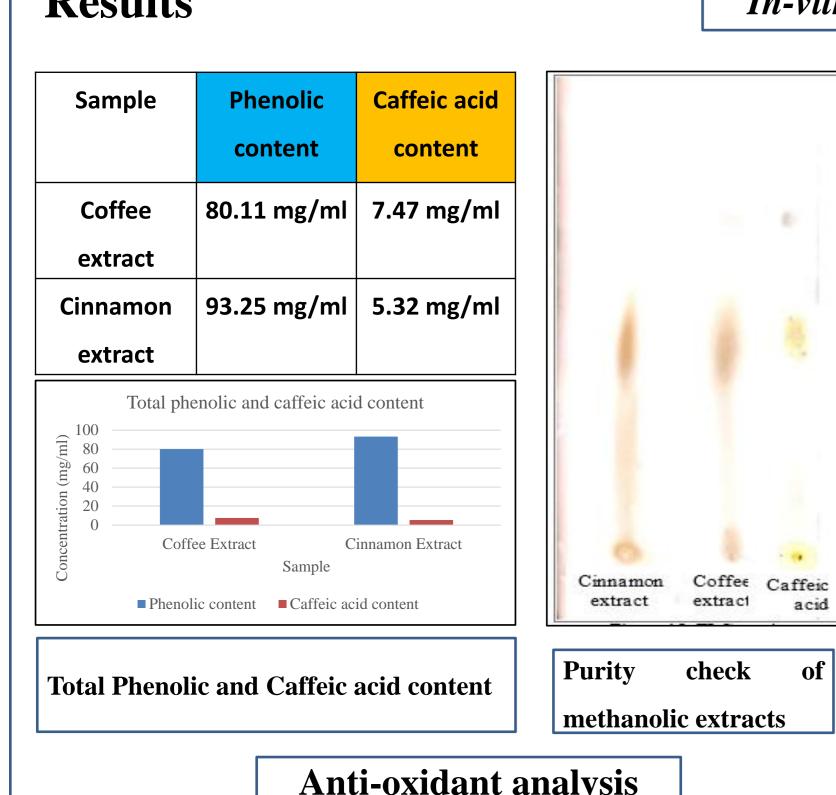

acid

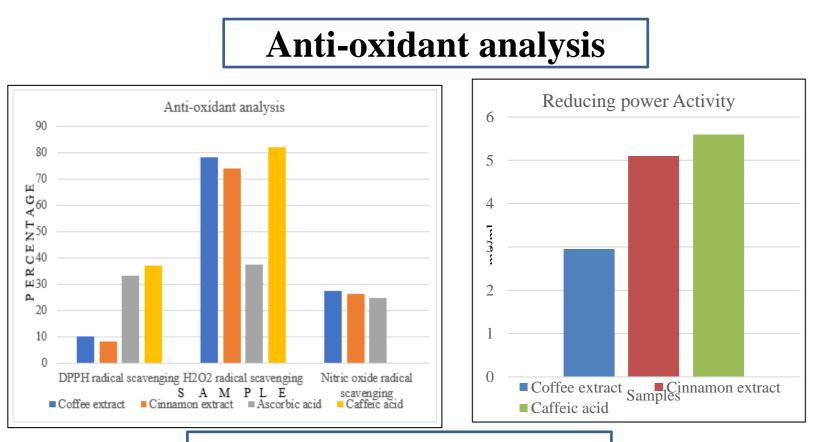
of

Coffee extract

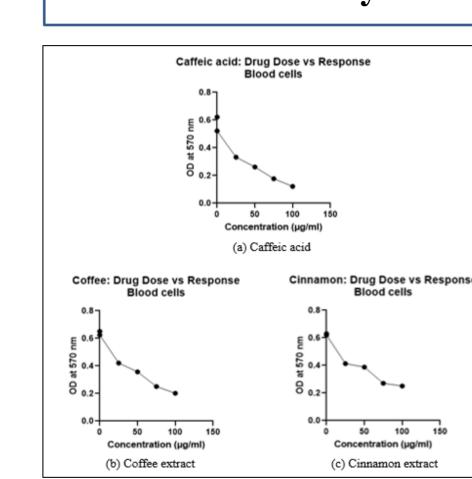
Caffeic acid

Cinnamon extract


In-Silico Modelling


Sketch and design compounds **ADME-T** properties calculation > Molecular docking with PPARy, IL-6, TNFalpha, and VEGF (predicted for the occurrence of numerous types of cancer and hence selected for the study) (2-6).

Results


In-vitro cytotoxicity analysis: Dose dependent response on MCF-7 cells

In-vitro cytotoxicity analysis

Type of Extract	IC 50 value(ug/ml) on MCF-7
Coffee	60.04
Cinnamon	81.12
Caffeic acid	51.14

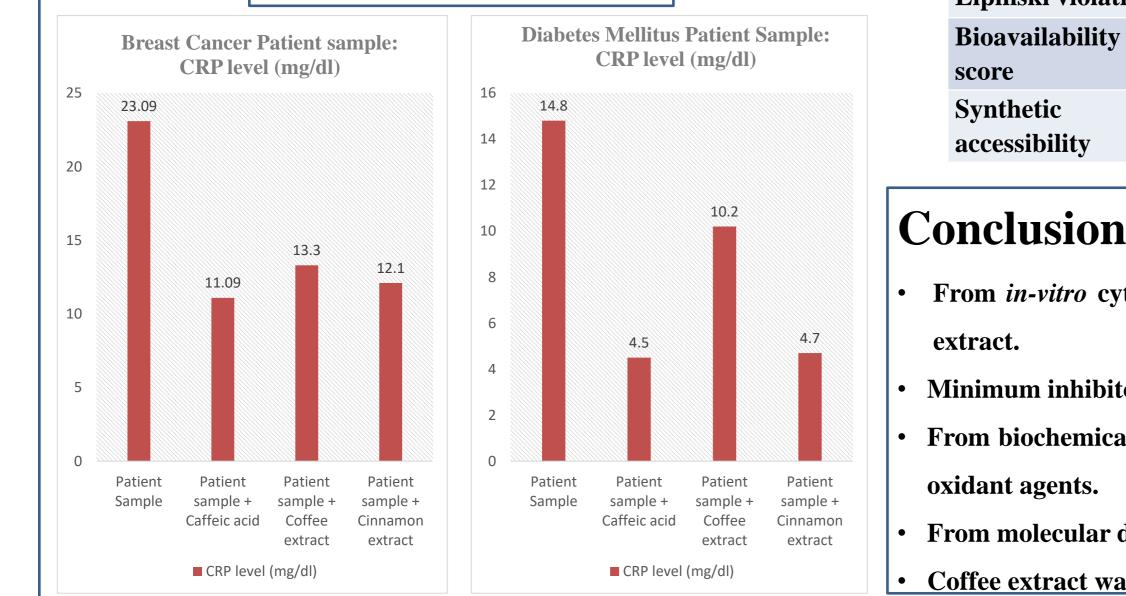
Statistical analysis of cell inhibition by the samples on blood cells or non cells shows cancerous **IC50** value in the range of 45-100 µg/ml.

activity • Anti-microbial for extracts on organisms E.coli and S. estimated by aureus was microdilution method.

• MIC for coffee extract was estimated to be $\sim 6 \mu g/ml$ while it was 4.88 µg/ml for cinnamon extract. Standard caffeic acid showed MIC to be near 5 µg/ml.

				A	nti-	mi	icro	bial	Act	ivity	: Minimum Inh	ibit	ory	Co	nce	ent	rat	ion	@μ	g/n	ıl
Sample + (E. coli)	60	50	40	20	10	5	2.5	1.25	0.6	0.3	Sample + (S. aureus)	60	50	40	20	10	5	2.5	1.25	0.6	0.3

40	20	10	5	2.5	1.25	0.6	0.3	Sample + (S. aureus)	60	50	40	20	10	5	2.5	1.2
-	-	-	-	-	-	-	++	Coffee extract	-	-	-	-	-	-	-	-
-	-	-	-	+	+	++	++	Cinnamon extract	-	-	-	-	-	-	+	+
-	-	-	+	+	++	++	++	Caffeic acid	-	-	-	-	-	+	+	+


ADMET	Caffeic	Chlorogenic	Coumaric	Ferulic	Rosmarinic		Molecular Dockir	ng – Binding	g Affinity Sco	re in (Kcal/mol)			
Molecular Weight	Acid 180.16	Acid 354.31	Acid 164.16	Acid 194.18	Acid 360.31	Ligand	ΡΡΑΒγ	IL-6	ΤΝFα	VEGFR-1	VEGFR-2		
Heavy atoms	13	25	12	14	26	Caffeic acid	-2.1	-4.4	-7.2	-6.8	-7.0		
Aromatic heavy atoms	6	6	6	6	12	Chlorogenic Acid		-5.1	-8.6	-8.6	-7.3		
Rotatable bonds	2	5	2	3	7	Coumaric Acid	-0.8	-4.1	-7.3	-6.7	-7.0		
H bond accepters	4	9	3	4	8	Ferulic Acid	-1.5	-4.6	-7.3	-6.4	-7.3		
H bond donors	3	6	2	2	5	Rosmarinic Acid	-1.7	-4.3	-9.4	-8.4	-8.4		
ESOL class	very soluble	very soluble	soluble	soluble	moderately soluble	LEU X:497 TVR X:501 K:501 X:354 K:551	ASP 54 UVS	TYR CS0	VAL A114 TYR B110 TYR C142 LEU C111 122	PHE 243 ALA 61 35 43 CYS ASP 242	GIV 112 PHE 108 UEU 30 VAL 106 VAL 89		
Lipinski violations	0	1	0	0	0	1	55 ····· 0	LEU A 148		p p p			
Bioavailability score	0.56	0.11	0.85	0.85	0.56	LEU X:351 X:355 X:395 X:391	GLU 51 LEU 55R 209 50	LE C146 E48 LFU B48 C48	C110	TYR TI13 TYR TI13 TYS GUU TYS G3 GUU 80 GUU	LEU 225 ALA 38 PHE 237 236		
Synthetic accessibility	1.81	4.16	1.61	1.93	3.38	Caffeic acid with PPARγ	Caffeic acid with IL-6	11	ic acid TNFα	Caffeic acid with VEGFR-1	Caffeic acid with VEGFR-2		
onclusion:								Refe	ences:				
From <i>in-vitro</i> cytotox	cicity assa	ay, IC50 was c	calculated to	be 64.04 µ	ıg/ml for coffe	e extract and 81.12	µg/ml cinnamon	1. http:	s://doi.org/1	0.3389/fimmu.2	2020.595835		
extract.								•	Ũ	0.3389/fimmu.2			
Minimum inhibitory c	concentra	tion was estim	ated to be 5 µ	g/ml for c	offee extract ar	nd 81.12 µg/ml for cir	namic acid.	3. doi: 10.3390/ijms21165723					
From biochemical test				4. DOI: 10.2174/187152061666616050212272									
oxidant agents.								5. DOI	: 10.1002/jt	ot.22039			
From molecular docki	ing and si	mulation, coff	ee extract and	l cinnamo	n extract were	shown effective anti-	oxidants.		0	0.3389/fonc.20	19.01070		
Coffee extract was obs	served to	<u>be better anti-</u>	microbial age	ent as well	<u>as anti-oxidan</u> t	t.							

Molecular Docking – Binding Affinity Score in (Kcal/mo	ar Docking – Binding Affinity Score i	(Kcal/mol
--	---------------------------------------	-----------

++

+

ADMET			Countaire					0 0				
	Acid	Acid	Acid	Acid	Acid	Ligand	ΡΡΑΒγ	IL-6	ΤΝFα	VEGFR-1	VEGFR-2	
Molecular Weight	180.16	354.31	164.16	194.18	360.31	Diguna						
Heavy atoms	13	25	12	14	26	Caffeic acid	-2.1	-4.4	-7.2	-6.8	-7.0	
Aromatic heavy atoms	6	6	6	6	12	Chlorogenic Acid	-1.4	-5.1	-8.6	-8.6	-7.3	
Rotatable bonds	2	5	2	3	7	Coumaric Acid	-0.8	-4.1	-7.3	-6.7	-7.0	
H bond accepters	4	9	3	4	8	Ferulic Acid	-1.5	-4.6	-7.3	-6.4	-7.3	
H bond donors	3	6	2	2	5	Rosmarinic Acid	-1.7	-4.3	-9.4	-8.4	-8.4	
ESOL class	very soluble	very soluble	soluble	soluble	moderately soluble	LEU X:497 X:501 X:501 X:351 X:354	ARG 210 MET 212	LEU CS0	VAL A114 TYR B110 TYR C142 LEU C111	PHE 243 ALA 61 35 43 CYS ASP 242	GLY 112 PHE 108 UEU 106 VAL 106 VAL 89	
Lipinski violations	0	1	0	0	0			LEU A148				
Bioavailability score	0.56	0.11	0.85	0.85	0.56	HIS X:477 LEU X:358 DYS PHE X:391	GLU 51 LEU 209 SER 50	LEU LEU B-45 C-48	CIL	TYR 114 TYR 113 GLU 112 113 GLU 112 114 111 111 111 111 111 111	LEU 225 ALA 56 VAL 38 PHE 237 236	
Synthetic accessibility	1.81	4.16	1.61	1.93	3.38	Caffeic acid with PPARy	Caffeic acid with IL-6	11	ic acid TNFα	Caffeic acid with VEGFR-1	Caffeic acid	
	xicity assa	ay, IC50 was o	calculated to	be 64.04 µ	ıg/ml for coffe	ee extract and 81.12 με	g/ml cinnamon	1. https	e	0.3389/fimmu.2		
extract.								-	U	0.3389/fimmu.2	2018.00745	
Minimum inhibitory o	concentra	tion was estim	ated to be 5 µ	ig/ml for co	offee extract a	nd 81.12 µg/ml for cinn	amic acid.		•	<u>ns21165723</u> 8715206166661	6050717777	
From biochemical tes	ts and tes	sts conducted v	with our clini	cal partne	r, it was conclu	uded that both extracts	s are good anti-	4. DOI 4	. 10.21/4/1	0/15/00100001		
oxidant agents.								5. DOI	: 10.1002/jt	ot.22039		
From molecular dock	ing and si	imulation, coff	ee extract and	d cinnamo	n extract were	shown effective anti-ox	xidants.		U	0.3389/fonc.20	19.01070	
Coffee extract was ob	served to	be better anti-	microbial age	ent as well	as anti-oxidan	t.			U			
			8	······································				L				

ECMC 2022

The 8th International Electronic **Conference on Medicinal Chemistry** 01-30 NOVEMBER 2022 | ONLINE