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Robust Nonlinear control of Maximum Power Point Tracking in PV solar
energy system under real environmental conditions
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Introduction
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» The need for
transition.

» Solar energy at the center of
this transition.

» The low conversion efficiency
of the PV module.

» The variability of the
operational efficiency of the
PV module.

» The need for Maximum Power
Point tracking (MPPT) In PV
systems.

» The limitation of most MPPT
algorithms in the literature.

fast energy



Block Diagram of the Proposed MPPT system
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System composed of PV module, Boost
converter, Load, ANN, proposed controller, and
PSO block for parameters tuning.

The Boost ensures impedance matching between
the PV source and the Load (principle of MPPT)

The controller via a nonlinear control law,
controls the Boost converter using a PWM signal

The ANN, predicts maximum voltage based on
environmental conditions

Controller optimization is ensured via PSO



Nonlinear control design

The Nonlinear controller proposed in this work is a Robust Integral Backstepping Boost converter with mathematical dynamics Equation

controller (RIBS) based on recursive and virtual Lyapunov design.
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The controller is obtained from the dynamics of the boost converter, considering that the
objective of the controller is to zero the error e; between the reference voltage from the
ANN and the actual PV voltage. As was stated, the controller is based on recursive
design, hence e, is the virtual control input, which in principal is the difference between
the reference an the actual inductor current from the boost converter. In the control law
(u), p is an integral action that has been added in the design to improve the steady-state
performance of the controller. To controller as seen from the control law has three
parameters i.e. K;, K,, and Ks.

Tuning the proposed controller

Tuning of the proposed controller is a milestone to ensure robust and optimal
operation of the PV system. As was mentioned, the controller has three
parameters contained in a vector V,as seen in Eq.(5). We have developed
mathematical equations to optimally tune the controller. This equations have
been developed from optimal assumptions in the control law. The control
parameters must therefore be obtained interims of desired control goals. From
the mathematical equation of the control parameters developed (see Equation (k)
and Equation (K,) , one needs to set a value of K, the goal e; to obtain K,. The
value of K, along with control goal e, and p, are used to compute k.
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Choice of the Switching Frequency

Just like any switch mode power electronics converter, that requires a
defined switching frequency, the choice of the switching frequency is eve
more critical for the proposed control system. A poor frequency will
negatively impact the transient regime of operation of the controller, if
care not taken the controller might deteriorate. In this work, though we
don’t make precision on the choice of the frequency, we show that a high
frequency can guarantee good transient response



Nonlinear control design e

Flowchart for the implementationa‘ the oposed controlled
system

Choice of the Switching Frequency

1. Initialization of PV parameters
2.Set Simulation Time (tsimylation)

'

Estimation of reference voltage [
using Artificial Neural Network

Tuning of the Non linear Integral
Backstepping Controller

Y

Apply the Robust Integral
—»  Backstepping Control action
Equation (4)

Initialize the controller tuning goals
1. Track the MPP
2. Set: e, e, and p to a desired
minimum value

It can be seen from the graph that high frequency improves the e i Tt
dynamic of the controller. Though we are still working on a precise Lituane

approach of obtaining this frequency, we recommend that a high
frequency should be considered. For this system the switching
frequency of 300kHz ensured satisfactory desired response L




Results and Discussion
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Real environmental conditions validation
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Conclusion

A robust integral backstepping controller (RIBS) for MPPT application using
a Boost converter has been presented. A trained Artificial Neural Network
model has been used to generate the reference maximum voltage. In addition
to the proved Lyapunov stability guarantees of the closed loop system,
mathematical equations derived from the tuning law have been used to tune
the controller. From comparisons, the controller performed better than the
P&O. Furthermore, the controller has been validated under real environmental
conditions and heavy load variations considered as external disturbances in
the system. Averagely the controller proved to be extremely robust and
satisfactory for optimizing the performance of PV systems.
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