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Abstract: One way to diagnose Covid-19 is to use the Polymerase Chain Reaction (PCR) test. 

However, this test is rather invasive. An alternative would be to use chest images of the patients to 

diagnose if the patient has Covid-19. These Chest X-Ray images have to be manually annotated by 

a medical professional such as a radiologist, and due to privacy concerns, getting access to readily 

available and annotated Covid-19 Chest X-Ray images is difficult. In order to train a deep learning 

model to perform image classification tasks, it is prudent to train the deep learning model on a 

large enough dataset to avoid the problem of overfitting. In this paper, we explored using Gener-

tive Adversarial Networks (GANs) as a form of data augmentation technique to enlarge the train-

ing data for deep learning models. We first explored how the synthetic data generated by GANs 

are affected by its training size. Following which, we compared the performance of the two differ-

ent GANs architecture, namely the Deep Convolutional Generative Adversarial Networks 

(DCGAN) and the Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-

GP). We successfully used GANs to generated synthetic Covid-19 Chest X-Ray images with a Fré-

chet Inception Distance (FID) score that was below 2. 

Keywords: Covid-19; Chest X-Rays; Generative Adversarial Networks (GANs); synthetic images; 

Deep Convolutional Generative Adversarial Networks (DCGAN); Wasserstein Generative Net-

works with Gradient Penalty (WGAN-GP); 

 

1. Introduction 

Medical data are often small in quantity and hard to come by due to data privacy 

reasons. For Covid-19 Chest X-Ray analysis, specialized medical professionals such as a 

radiologist must physically and manually inspect the chest x- rays. As such, such medi-

cal data are costly and time- consuming to produce. Machine learning and deep learning  

models are excellent at solving computer vision problems such as image classifica-

tion. However, the training models usually over fit with a small dataset. Data augmenta-

tion is one of the most commonly used methods to aid deep learning models to prevent 

overfitting. Data augmentation is a valuable  technique to enlarge the training dataset to 

provide more training data for the deep learning models. Data augmented using GANs 

allows new data that follows closely to the original distribution of the training data 

without adding too much noise. In this paper, we provide a deep learning approach to 

data augmentation through the application of Generative Adversarial Networks 

(GANs). In section 2, we introducerelated work in the generation of synthetic X-Ray im-

ages using Generative. Adversarial Networks, followed by section 3, where we intro-

duce our methodology. In section 4, show the results and make comparisons. Lastly, we 

draw our conclusions in section 5 and provide some suggestions for future work in sec-

tion 6. 
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2. Related Work 

Generative Adversarial Networks (GAN) is a framework that enables deep learning 

models to learn the data distribution from the training data to produce realistic synthetic 

data. [5] introduced the Generative Adversarial Network(GAN). A typical GAN frame-

work consists of two separate deep learning models, a generator and a discriminator. In 

the GAN architecture, the generator’s main objective was to produce synthetic data to 

fool the discriminator as if the synthetic data is the actual data by learning the distribu-

tion of the training data. At the same time, the discriminator’s main objective was to 

learn and distinguish between the actual training data and the generated data by the 

generator. Data augmentation is a technique to modify the data slightly by adding noise 

to increase the training dataset for deep learning models. In the following section, we 

present some relevant works on using Generative Adversarial Networks (GAN) to gen-

erate synthetic chest images. Researchers from Qassim University explored using GAN 

to expand all classes of chest x-ray with respiratory issues to achieve a more balanced 

dataset, as the number of typical chest x-ray images were significantly higher than those 

with respiratory issues. The study suggested that augmented data can increase the accu-

racy of image classifiers [2].  

Further, researchers from Harrisburg University of Science and Technology ex-

plored using DCGAN to generate chest x-ray images, where the generated chest x-ray 

images achieved an Fréchet Inception Distance (FID) score of 1.289, and a CNN image 

classifier trained on generated images achieved an accuracy of 95.5%, 3.5% improvement 

over traditional data augmentation techniques [18]. 

Later, [19] explored the use of DCGAN to generate synthetic chest x-ray images al-

lowing the Convolutional Neural Network (CNN) image classifier to achieve higher ac-

curacy than the pre- trained image classifier. In addition, researchers from Delhi Techno-

logical University explored using Deep Convolutional Generative Adversarial Networks 

(DCGAN) to generate Covid-19 positive chest CT images. They found that validating the 

generated Covid-19 chest images was challenging as they needed a medical professional 

to validate them manually. Instead, they validated the generated Covid-19 chest images 

using a pre-trained DenseNet169 model, achieving an accuracy of 40% higher than the 

baseline model [11]. 

Later, researchers from the Massachusetts Institute of Technology [15] explored 

Conditional GANs for data augmentation for chest x-ray classification. In their work, 

they found that the data augmentation with GAN provided the best improvement when 

applied to small training datasets and data augmentation from GAN even gave no or 

negative improvement for large training datasets. [21] used a combined dataset of X-ray 

modality for chest disease detection by including a COVID-19 X-ray imaging dataset. To 

normalize the data, data augmentation was performed. This preprocessed data removed 

the data bias. To make the proposed study more promising, [21] used two methods of 

validation (5- and 10-fold) are performed. They observed from the results that more 

folding made the results more accurate. This means that the proposed study can be used 

to detect multi-class chest disease detection. 

Often the images in databases have low contrast, therefore, [22] implemented a new 

hybrid method, and the contrast was improved. Improvement of the contrasts plays a 

key role in obtaining useful features. [22] developed a new fully automated deep learn-

ing feature fusion-based method for the classification of chest CT images originating 

from COVID-19-infected and healthy subjects. 

In the paper by Venu & Ravula [18], they suggested one potential way to improve 

the DCGAN image quality was to replace the binary cross-entropy loss function in the 

DCGAN with the Wasserstein’s loss with gradient penalty. As such, in this paper we 

synthesize Chest X-Ray images using the DCGAN and the WGAN-GP and compared 

the performance of the two different GANs using the FID score from the images gener-

ated. Later, [20] proposed a unique way to minimize human effort in the extraction of 
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medical image masks by introducing an advanced version of the Deep Q-Network 

(DQN) architecture. As such, [20] enhanced deep reinforcement learning to select opti-

mal masks during the segmentation of medical images and provided a robust strategy 

for semantic segmentation that uses a deep reinforcement learning model.  

3. Methodology  

[5] describe in their paper that the GAN model reaches an equilibrium when the 

generator can produce synthetic data that looks completely real while the discriminator 

achieves an accuracy of 50% in distinguishing between actual and fake data. 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺)= 𝐸𝑋 ~ ℙ𝑑𝑎𝑡𝑎(𝑥) [𝑙𝑜𝑔𝐷(𝑥)]+ 𝐸𝑍 ~ ℙ𝑧(𝑧)[𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑍)))] (1) 

The GAN model’s objective function is described in equation (1). 𝐸𝑋 ~ ℙ𝑑𝑎𝑡𝑎(𝑥) rep-

resents the expected value of all the real instances from the training data and 𝐸𝑍 ~ ℙ(𝑧) is 

the expected value of all the fake instances from the generator. ℙ𝑍(𝑍) is the noise data 

sampled from a standard Gaussian distribution. 𝐺(𝑍) represents the noise data being 

mapped to the distribution of the training data 𝑥 by the generator. 𝐷(𝑥) is the probability 

of the discriminator correctly identifying the training data as real while 𝐷(𝐺(𝑍)) repre-

sents the probability of the discriminator identifying the generated data as real data. 

During training, the GAN model will aim to maximize 𝑙𝑜𝑔𝐷(𝑥) which is the loga-

rithm of the 𝐷(𝑥)’s probability of correctly identifying the correct labels for both the real 

training data and the data generated by the 𝐺(𝑥). Simultaneously, the GAN model will 

also minimize 1 −𝑙𝑜𝑔𝐷(𝐺(𝑥)) which is the loss for the generator for being correctly identi-

fied by the 𝐷(𝑥) as fake. During training, the generator takes in a random input given 

and maps the random input to the data space of the actual data. The input passes 

through a series of convolutional-transpose layers in the neural network to generate a 

fake image resembling the training data. While during training, the discriminator acts as 

a binary classifier as it tries to distinguish the data given as real or fake. The discrimina-

tor takes in the generated data as input and passes the data through a series of convolu-

tion layers in the neural network to generate a scalar probability of the data being real or 

fake. 

Figure 1. GAN Architecture. 

3.1. Data 

The Covid-19 positive images used to train the GAN models came from the 

Covid19-radiography-database from Kaggle [3, 13]. The repository consists of 3616 

covid-19 positive images, 10192 normal lung images, 6012 non-covid lung infection im-

ages and 1345 viral pneumonia images. All images were resized to 299x299. In this pa-

per, we will only be using the Covid-19 positive chest x-ray images to train the GAN 

model as our objective is to generate Covid-19 chest x- ray images. 
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Figure 2. Covid-19 Positive X-Ray Images. 

3.2. Image Pre-Processing 

The input passes through a series of convolutional transpose layers in the neural 

Contrast Limited Adaptive. Histogram Equalization (CLAHE) is used to pre-process the 

images before training the GAN models. We used the OpenCV python library [8] to ap-

ply CLAHE to the original training data, following which the Covid-19 chest x-ray im-

ages will be resized from 299x299 to 64x64 and normalized from having pixel values be-

tween [0, 255] to [-1, 1] before training the GAN models. 

The application of the CLAHE technique on the chest x-ray images significantly in-

creases the contrasts between the lungs and the non-lung regions of the image. The in-

crease in contrasts was useful as it made the lung region more distinct from the non-lung 

region. As such, we trained our GAN models with images pre-processed using CLAHE.  

3.3. Deep Convolutional Generative Adversarial Network  

Deep Convolutional Generative Adversarial Networks (DCGAN) is an extension of 

the GAN model. DCGAN was first introduced by [12]. In his paper, the DCGAN archi-

tecture explicitly uses convolutional-transpose layers in the generator and convolutional 

layers in the discriminator. In the generator, each convolutional-transpose layer is fol-

lowed by a batch norm layer and a ReLU layer, while a LeakyReLU layer follows the 

convolution layer in the discriminator. The last layer in the discriminator uses a sigmoid 

layer to predict the probability that the image is real or fake. 

Following the paper on DCGAN by [12], the paper on WGAN-GP by [6] and the tu-

torial provided by PyTorch (Inkawhich, n.d.) both the DCGAN and WGAN-GP had the 

same architecture for its generator and the discriminator except for the loss function 

where the DCGAN uses a binary cross-entropy loss function whereas the WGAN-GP 

uses the Wasserstein's distance with gradient penalty as its loss function. 
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Figure 3. Architecture of the Generator of the DCGAN. 

Figure 3 shows that the generator takes in a 100 x 1 noise vector into the input layer. 

Following the input layer are five convolution-transpose layers to upsample the input. 

Each convolution- transpose layer was followed by a batch norm layer and a ReLU layer 

except for the last layer. The last layer, the output layer, has a convolution-transpose 

layer followed by a Tanh layer that returns a 64 x 64 x 3 vector with values between [-1, 

1]. 

The input layer in the discriminator took in a 3 x 64 x 64 vector generated by the 

generator. Following the input, a layer is five convolution layers. Each convolution layer 

is followed by a LeakyReLu layer with a slope of 0.2 except for the last layer. The last 

layer, the output layer, is a convolution layer followed by a sigmoid layer that outputs 

the probability of the image generated as real or fake. 

The DCGAN model uses the binary cross-entropy loss function to calculate the loss 

for both the generator and the discriminator.  

3.4. Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN- GP) 

WGAN-GP is also an extension of the original GAN mentioned by [5]. WGAN-GP 

was first mentioned by [6]. In the paper by [6], the WGAN-GP uses a different loss func-

tion for both the generator and discriminator loss as compared to the DCGAN described 

by [12]. In the WGAN-GP architecture, the discriminator, called the critic, omits the sig-

moid layer in the last layer. Instead of finding the probability that the input data given to 

the critic is real or fake, the WGAN-GP determines the score of the input data using 

Wasserstein's distance with gradient penalty. 

The WGAN-GP closely follows the architecture of the DCGAN for its generator and 

discriminator. Except that the InstanceNorm layer was used instead of a batch norm in 

the discriminator to allow the critic’s penalty to work as planned. Also, the discriminator 

omits the sigmoid layer in the output layer as it does not calculate the probability of the 

input data being real or fake. The WGAN-GP uses the Wassertein’s distance with gradi-

ent penalty as opposed to the binary cross-entropy loss for calculating its loss. As op-

posed to DCGAN where the discriminator calculates the probability of each image if it is 

real or fake, the WGAN-GP utilizes the discriminator called critic to give each image a 

score. The score which is used as the realness of the data is calculated using the Was-

sertein’s distance with gradient penalty. 

𝑊𝑎𝑠𝑠𝑒𝑟𝑡𝑒𝑖𝑛′𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝐸𝑥  ~ ℙ𝑔 [𝐷(𝑥 )] − 𝐸𝑥 ~ ℙ𝑟[𝐷(𝑥)] + 𝜆𝐸�̃� ~ ℙ̃𝑥 

[(||𝛻�̃� 𝐷(�̃�)||2 − 1) ]2 

In the Wassertein’s distance with gradient penalty, 𝐷 represents the set of 1-

Lipschitz functions. 𝐸𝑥  ~ ℙ𝑔 refers to the expected value of all the fake instances generated 

by the generator, 𝐸𝑥 ~ ℙ𝑟 refers to the expected value of all the real instances from the 

training sample. 𝐸𝑥  ~ ℙ𝑔 [𝐷(𝑥 )] − 𝐸𝑥 ~ ℙ𝑟[𝐷(𝑥)] refers to the Wasserstein's distance between 

the generated data and the actual training data. 𝜆 𝐸𝑥 ̃ ~ ℙ̃𝑥 [(||𝛻�̃� 𝐷(�̃�)||2 − 1)]2 refers to the 

gradient penalty used to enforce the 1-Lipschitz space for the critic of the WGAN-GP 

model. The 𝜆 represents the gradient penalty coefficient, ℙ𝑥 ̃   represents the distribution 

obtained by uniformly sampling along a straight line between the real and generated 

distributions ℙ𝑟 and ℙ𝑔. 

3.5. Experiment Methodology with GANs for Image Generation  

We conducted three different experiments to understand how GAN works. In the 

first experiment, we trained the DCGAN model with 4 datasets of different sizes. In the 

second experiment, we tune the epoch hyperparameters using one of the four datasets 

chosen from the first experiment. In the last experiment, we compared the performance 

of the images generated by DCGAN and the WGAN-GP using the results from the first 

two experiments. 
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As specified in the DCGAN paper by [12], the DCGAN uses the Adam optimizer 

with a learning rate of 0.0002 and a Beta1 of 0.5. While in the WGAN-GP paper by [6], 

the WGAN-GP uses an Adam optimizer with a learning rate of 0.0001, Beta1 of 0.5 and 

Beta2 of 0.9. 

While GANs are capable of generating fake data that highly resembles the actual 

training data, it is hard to evaluate the performance of GANs. One of the methods to 

evaluate GANs is through the use of the Fréchet Inception Distance (FID) score first in-

troduced by [7]. In his paper, he introduced FID score as a metric to measure how the 

GAN model is performing by comparing the generated images to the real training imag-

es. 

The FID score measures the quality of the images generated by the GAN by meas-

uring the Fréchet distance between the generated images and the actual training images. 

The FID score is calculated based on the distribution of the real images used to train the 

GAN model against the synthetic images generated by the GAN model. 

The FID score is calculated based on the distribution of the real images used to train 

the GAN model against the synthetic images generated by the GAN model. The FID 

metric measures the Fréchet distance between two the multidimensional Gaussian dis-

tributions, 𝑋𝑔 and 𝑋𝑟 obtained from the 2048-dimensional activations of the InceptionV3 

pooling layer for the real images and generated images respectively. 

As a rule of thumb, the lower the FID score, the better the GAN is performing as the 

images generated by the GAN model are closer to the training images in terms of the 

Fréchet distance between them. 

4. Comparison and Results of the DCGAN and the WGAN-GP 

4.1. Results of the DCGAN 

The first experiment was conducted to first experiment to understand how the dif-

ferent sizes of the training datasets affect the quality of images generated by the DCGAN 

model. In the experiment, we generated 1000 synthetic Covid-19 positive chest x-ray im-

ages from the DCGAN models [4,9] using four different datasets of varying sizes. The 

datasets contain 500, 1000, 1500 and 2000 actual Covid-19 images respectively. Each of 

the DCGAN were trained with 500 epochs and 128 batch size in order to obtain a fair 

comparison between the DCGAN trained on different datasets. We obtained the FID 

score for each of the four DCGAN models by comparing the 1000 images generated to 

the training data used to train the  DCGAN model. The FID score for the 1000 images 

generated was calculated using the Pytorch-FID package from a public Github reposito-

ry by [14]. Since we only generated 1000 images, a sample much  smaller than we used 

the 768 as the dimension number instead. With a sample size smaller than 2048, we will 

not be able to take advantage of the InceptionV3 pool-layer [10,16,17], as such we will 

use the previous layer, which is a Pre-aux classifier with 768-dimensional features. 

In table 1 below, we display the FID score for all datasets. All the FID scores are be-

low 2, this means that the images generated by the DCGAN are similar to the original 

training images, indicating that the DCGAN performed well in generating synthetic X-

Ray Chest Images. 

Table 1. FID Score for DCGAN Trained with Different Datasets. 

Dataset size (Number of actual 

Covid-19 positive images) 
FID score of the chest x-ray images generated 

500 1.763 

1000 1.494 

1500 1.405 

2000 1.249 

We notice that the FID score for images generated by DCGAN trained on 1000 images 

and 1500 images are relatively close, with only a slight difference of 0.089. This shows 



Eng. Proc. 2022, 4, x FOR PEER REVIEW 7 of 4 
 

 
that images generated by the DCGAN trained on 1000 images performs quite closely to 

the images from DCGAN trained with 1500 images. This demonstrates the capabilities of 

DCGAN to generate high quality synthetic data despite having a smaller training da-

taset. 

 

Figure 4: Generated covid-19 positive chest x-ray images with dataset of 1000 images at 50 

epochs. 

We can see in figure 4 that at 50 epochs, the DCGAN model is able to generate images 

that resemble chest x- ray images although the images are very pixelated and blurry. 

Figure 5. Generated covid-19 positive chest x-ray images with dataset of 1000 images at 500 

epochs. 

In figure 5, we observed that the images at epoch 500 produced by the DCGAN are 

now less blurry as compared to the images in figure 11. And have a much higher resem-

blance to the Covid-19 chest x-ray images used to train the DCGAN model. Thus show-

ing that the DCGAN model improves and generates higher quality  images as training 

progresses. 
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Figure 6. DCGAN’s Generator and Discriminator loss trained with dataset of 1000 images. 

We observed in figure 6 that the GAN generator needed some time to ‘warm up’ 

and that the generator experiences high loss during the starting iterations. As the gener-

ator continues to learn, the loss gradually reduces. However, the generator is still rather 

unstable as observed in figure 6 where the generator’s loss is still fluctuating. 

The number of epochs used for training a model is a hyperparameter that directly 

affects the quality of the deep  learning model as the number of epochs affect how the 

model learns. The epoch hyperparameter is the number of times each training sample 

goes through a complete pass in the entire neural network. A complete pass refers to 

both the forward pass and the back-propagation. 

Due to the limited computational resource and time needed to train the DCGAN on 

a larger dataset, we focused on using the 1000 images dataset and batch sizes of 128 to 

train the DCGAN to fine-tune the epochs hyperparameter to obtain the best performing 

DCGAN. 

To strike a balance between finding the optimal epoch number to train the GAN 

model and managing limited computational resources, we trained the DCGAN with 

1000 images as the training data up till 800 epochs. At every 100th epoch starting from 

the 500th epoch, we generated 1000 Covid-19 chest x-ray images to evaluate the perfor-

mance of the DCGAN at the current epoch using the FID score. 

Table 2: FID Score of DCGAN at Different Epochs 

Epoch FID score 

500 1.451 

600 1.415 

700 1.399 

800 1.640 

From table 2, we observed that training the DCGAN longer may not result in better 

performance due to the instability of the generator. The images generated by the 

DCGAN have shown to improve in quality as the FID score decreases from 1.451 at 500 

epochs to 1.415 at 600 epochs and 1.399 at 700 epochs. However, at 800 epochs, the im-

ages generated by the DCGAN perform poorer as the FID of the images generated in-

creases to 1.640. This indicates that training longer does not equate to better performance 

for the DCGAN due to the instability of the generator during training. From table 2, we 

know that training the DCGAN with 700 epochs will give us the best performing 

DCGAN model. 

Dataset  Accuracy   Precision  Recall  F1 Score  

Only Covid-19 positive  0.96  0.94  0.97  0.95  

Covid-19 positive + im-

ages generated from 

DCGAN   

0.98  0.97  1  0.98  

Covid-19 positive + im-

ages generated from 

WGAN-GP  

0.98  0.99  0.98  0.98  

4.2. Results for the WGAN-GP 
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We trained a WGAN-GP model [1] using 1000 Covid-19 chest x-ray images as the 

training data. The hyperparameters used to train the WGAN-GP model are batch size 

128 and epochs 700. Using this set of requirements ensured that the comparison between 

the DCGAN and the WGAN-GP is fair. 

Figure 7. Generated Covid-19 positive chest x-ray images with dataset of 1000 images using 

WGAN-GP at 700 epochs. 

From figure 7, we see that at 700 epochs, the images generated by the WGAN-GP 

model show high resemblance to chest x-ray images but it is still pixelated. WGAN-GP 

Generator and Critic loss trained with a dataset of 1000 images and the WGAN-GP’s loss 

was stable as it did not fluctuate randomly throughout the training. 

4.3. Comparison of the DCGAN and WGAN-GP 

We used the FID score of the images generated by the two GAN models to compare 

their performance. To allow for model comparisons, the two GAN models, DCGAN and 

WGAN-GP, were trained with the same dataset consisting of 1000 Covid-19 chest x-ray 

images and hyperparameters batch size 128 and epoch 700. Table 3 displays the FID 

scores of the two GAN models. 

Table 3. FID for Images Generated by DCGAN and WPGAN-GP. 

GAN Type FID Score 

DCGAN 1.399 

WGAN-GP 1.583 

From table 3, we found that training at batch size 128 and epoch 700, the WGAN-

GP performed worse than the DCGAN as the images generated by the DCGAN had a 

better FID score than the images generated from the WGAN-GP. 

From table 4 below, below showcases how the InceptionV3 Covid-19 image classifi-

er performs with the addition of data augmented from the GANs. 

Table 4. Model Accuracy Metrics. 

Dataset  Accuracy   Precision  Recall  F1 Score  

Only Covid-19 positive  0.96  0.94  0.97  0.95  

Covid-19 positive + im-
ages generated from 

DCGAN   
0.98  0.97  1  0.98  

Covid-19 positive + im-
ages generated from 

WGAN-GP  
0.98  0.99  0.98  0.98  

From table 4, we observed that without the augmented Covid-19 chest x-ray images 

from the GANs, the InceptionV3 Covid-19 image classifier already has pretty good per-
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formance with an accuracy of 0.96. As such, the inclusion of augmented data from the 

GAN model only manages to improve the performance of the InceptionV3 Covid-19 im-

age classifier slightly from 0.96 to 0.98. Even though the increase in performance is not 

very significant, it signifies that the InceptionV3 Covid-19 image classifier is now more 

robust as it has been trained on a larger dataset. 

We also observed from table 4, that overall the precision, recall and F1-Score metric 

has shown slight improvement as well with the addition of data augmented from the 

GAN models. From this experiment, we can conclude that the addition of data aug-

mented from the GAN models are indeed useful in improving the performance of the 

InceptionV3 Covid-19 image classifier. 

5. Limitations of GANs 

Even though GANs are very valuable for generating more data and X-Ray images, 

there are limitations of using GANs. Firstly, there's still no intrinsic metric evaluation 

present for better model training and generating complex outputs. In addition, for densi-

ty estimation, we still cannot predict the accuracy of the density of the evaluated model 

and state that this image is denser enough to move forward with. Evaluation of the 

GANs that are generating the data is being decided manually. GANs are elegant mecha-

nisms for data generation but due to  unstable training and unsupervised learning, it is 

difficult to train and generate output. 

6. Conclusion 

We have demonstrated that GANs can successfully generate Covid-19 chest x-ray 

images. We generated 1000 synthetic Covid-19 chest x-rays images with FID scores all 

much lower than 2. We also found that it is not always necessary to train the GAN mod-

el with a larger dataset to achieve better results, as we found that the DCGAN trained 

with 1000 images performed relatively similar to the DCGAN trained on 1500 images. 

Further, due to how unstable the generator of the DCGAN is during training, training 

the DCGAN longer may not lead to better results as the DCGAN performed much better 

at 700 epochs than at 800 epochs. 

In addition, we also found that while WGAN-GP has a more stable training than 

DCGAN, it takes WGAN-GP much longer to achieve the same performance as the 

DCGAN. In conclusion, GANs can avoid the problems that traditional data augmenta-

tion methods cannot avoid, which is to generate new image data from the training data 

that follows the same distribution of the training data without adding too much noise. 

Moreover, GANs can generate high-quality and realistic image data even when trained 

on a small dataset which is undoubtedly very useful when training data and computa-

tional resources are limited. When trained on a small dataset, deep learning models are 

often overfitting. With additional data generated from the GAN models, the problem of 

overfitting can be overcome. 

7. Future Work 

A possible future study would be to generate images that are larger than 64 x 64 

(Height x Width) and  compare how the DCGAN and WGAN-GP would fare. In this 

paper, we only managed to explore training the DCGAN up till 800 epoch, in a future 

study we could explore training the DCGAN using different batch sizes as well. In fu-

ture iterations of this experiment, instead of focusing on using 1000 images to train the 

GAN model, we could run the same experiment again but with a focus on a larger train-

ing dataset. 
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