Physical Picture of Electron Spin

Siva Mythili Gonuguntla California State University, Fresno

Physical Picture of Electron Spin

2nd Electronic Conference on Universe

Siva Mythili Gonuguntla California State University, Fresno

February 16th to March 2nd 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Problem with electron spinning

Physical Picture of Electron Spin

Siva Mythili Gonuguntla California State University, Fresno

- Magnitude of spin $\sim rac{\hbar}{2}$
- Assume electron radius of $r_e \sim 10^{-15}$ m
- The electron angular momentum $\sim m_e v r_e$
- In order for $m_e v r_e \sim \frac{\hbar}{2}$ need $v \sim 100 c!$
- Pauli pontificates that spin has no classical counterpart.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

According to Pauli this picture is not correct

And spin is a rotation

Physical Picture of Electron Spin

Siva Mythili Gonuguntla California State University, Fresno

- In a "famous" 1986 American Journal of Physics article * Ohanian showed electrons do rotate
- Takes Pauli, text book writers, and physics pedagogy to task.
- Accepted by experts but not textbook writers, YouTubers
- Spin is rotation of field mass-energy
- This is exactly the same as classical mechanics.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

H. Ohanian, "What is Spin?", American Journal of Physics, Vol. 54, 500 (1986).

Photon spin example

Physical Picture of Electron Spin

Siva Mythili Gonuguntla California State University, Fresno • Momentum density $T^{0i} = P^i = \left(\vec{E} \times \vec{B}\right)^i = \left(\vec{E} \times (\nabla \times \vec{A})\right)^i$.

• Now
$$\left(\vec{E} \times (\nabla \times \vec{A})\right) = E^i \nabla A^i - (\vec{E} \cdot \nabla) \vec{A}$$

- The total angular momentum is $\vec{J} = \int \vec{x} \times (\vec{E} \nabla A^i) d^3x - \int \vec{x} \times (\vec{E} \cdot \nabla) \vec{A} d^3x = \vec{L} + \vec{S}.$
- For circular polarized E&M wave last term gives $\pm\hbar$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Dirac equation - momentum density

Physical Picture of Electron Spin

Siva Mythili Gonuguntla California State University, Fresno

- Dirac momentum density $\vec{G} = \frac{\hbar}{4i} \left(\Psi^{\dagger} \nabla \Psi \Psi^{\dagger} \vec{\alpha} \partial_t \Psi \right) + h.c.$
- Using Dirac equation and commutation of $\vec{\alpha}$'s we get $\vec{G} = \frac{\hbar}{2i} \left(\Psi^{\dagger} \nabla \Psi - (\nabla \Psi^{\dagger}) \Psi \right) + \frac{\hbar}{4} \nabla \times (\Psi^{\dagger} \vec{\sigma} \Psi) = \vec{L} + \vec{S}.$
- Take Gaussian wave packet $\Psi = (\pi d^2)^{-3/4} e^{-r^2/2d^2} (1, 0, 0, 0)$ Gives $\vec{G} = \frac{\hbar e^{-r^2/d^2}}{2d^2} \left(\frac{1}{\pi d^2}\right)^{3/2} (-y\hat{\mathbf{x}} + x\hat{\mathbf{y}}) \propto \hat{\varphi}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Electron Spin

Physical Picture of Electron Spin

Siva Mythili Gonuguntla California State University, Fresno

- Now in general the total angular momentum is $\vec{J} = \int \vec{x} \times \vec{G} d^3 x$ $= \frac{\hbar}{2i} \int \vec{x} \times [\Psi^{\dagger} \nabla \Psi (\nabla \Psi^{\dagger}) \Psi] d^3 x + \frac{\hbar}{4} \int \vec{x} \times [\nabla \times (\Psi^{\dagger} \vec{\sigma}) \Psi] d^3 x$
- For the Gaussian wavepacket the first term is zero
- Second term (via double cross product and integration by parts)

$$rac{\hbar}{2}\int \Psi^{\dagger}ec{\sigma}\Psi d^{3}x=ec{S}
ightarrowec{S}_{operator}=rac{\hbar}{2}ec{\sigma}.$$

 Thus spin is rotation of the field mass-energy of Ψ same as for the photon field A_µ same as for a classical object.

Conclusion

Physical Picture of Electron Spin

- Electron spin is just like every other angular momentum a rotation of energy-mass.
 - Spin is intrinsic/inherent in the wave field, but it is not internal
 - To paraphrase Galileo "And yet it rotates".

More science quotes at Today in Science History