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Vacuum Energy

The vacuum (zero-point) energy of a free (non-interacting) quantum field in flat spacetime, can be modeled
as the sum of zero-point energies of a set of infinite number of quantum harmonic oscillators. one for each
normal mode and given simply as + >_, hwy, for bosonic fields and — Y, 2hwy, for fermionic fields [3], [4], and
where %fmk represents the eigenvalues of the free Hamiltonian, wr = v/m?2 + k2 in Natural units, & is the wave
number (with units of 1/length), m is the particle mass associated with a specific field (assumed to be constant
and not running), and A is the reduced Planck constant. The negative sign. in front of the infinite sum, is due
to the negative energy solutions allowed in the fermionic fields which must follow the Pauli Exclusion principle
by obeying the canonical anti-commutation relations.

3] W. Pauli, “Pauli Lectures on Physics: Vol 6, Selected Topics in Field Quantization”, MIT Press, 1971.
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Vacuum Energy (density)
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Proe = 973 f V(me2)2 + (hke)2E2dk:

where ¢ 1s the degeneracy factor which includes, a sign factor (—1)255 . a spin factor 27 +1 for
massive fields and 2 for massless fields, a factor of 3 for fields with color charge, and a factor of
2 for fields that have an antiparticle distinct from their particle. Note also that ¢ 1s the speed
of light in vacuum and j is the spin. It is also important to note that Pauli [4] introduced
the following 3 polynomial-in-mass and 1 logarithmic-in-mass conditions i order to obtain a

vanishing vacuum energy density:

Z gim; =0 Zgimf = () Z g;i =0 Z g;m; In (?ﬁg) = ()




Vacuum Energy (density) catastrophe!

pl—-—-— M+ Kk dk~—_[ kdk = (10-22)

In natural units, the Planck mass = 1.22x10'” GeV. Thus, the theoretical value for energy density
of the vacuum is

;

_ (r22x10") | |

p, = = =2.80x10™ GeV*. (10-23)
T

Note length in natural units is GeV™', so an energy per unit volume would be measured in GeV*.
The experimental value for the upper limit on energy density of the vacuum is

p. <107 GeV*, (10-24)

a discrepancy between theory and experiment by a factor of more than | 0'*. Yikes.

6] R. D. Klauber, “The Student Friendly Quantum Field Theory”, 2013.
https://www.quantumfieldtheory.info/



Vacuum Energy density
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Riemann Zeta function and its application to physics

C(s) =), qn°
S1=1+1+1+14+--- S$1=2(0) = —
So=14+24+3+4+--- Sy =2(—1) =

 Hawking S.W. (1977), Zeta function regularization of
path integrals in curved spacetime, Communications
in Mathematical Physics, 55 (2) 133-148.

» Cassimir Effect: zeta(-3) =1/120

e Remmen G. N. (2021), Amplitudes and the Riemann
Zeta Function, arXiv:2108.07820v2
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A new Riemann Zeta function regularization technique

Let’s define the p function as the improper integral of a power function with exponent p

u(p) = [ avia (10)
Jo
with p € N?, where N = {0,1,2,---}.

The mu function can be interpreted as the natural extension of the Riemann zeta function where the
discrete sum is replaced by a continnous integral. The above improper integral can be equivalently written as
the following infinite series by splitting the limits of integration into successive integer numbers. That is

p(p) =) _ Alp,n) (11a)
n=1
where -
A(p,n) = [ e = Jlr - (nrtt — (- 1) (11b)
rn—1 J

is the definite integral of the power function over limits n — 1 and n. In what follows, we will show that the
divergent series in the RHS of (11a) can converge to a finite result!



A new Zeta function regularization technique
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The last summation in RHS of (14) can be written in terms of the Reimann zeta function ((—k) = Y.°- , n*
and therefore we arrive at
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Zeta function regularization applied to vacuum energy problem
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Results Theoretical

Degeneracy factor g
sign X spin X color

Fields

x antiparticle

Mass ({j\.—r ,r’f I!'_"Q :]

(J/m?)

{1(1'-(‘

Quarks (x 6): fermionic —1x (2x1/241) x 3 x 2 =

178.31 x 10°

16.29 x 10%

—12
—4

Leptons (x 6): fermionic —1x (2x1/241) x 1 x 2 = 1.90 x 10° +2.70 x 1036
W: bosonic Il x 2x1+1) x 1 x2=6 80.38 x 107 —1.30 x 10*
7 : bosonic Il x (2x1+1) x 1 x1=3 01.19 x 10° —1.08 x 10%

e I x (2x0+1) x 1 x 1 =1 19510 x 10° 197 x 10%
Total 45.93 x 104
285 x 107 GeV
Observational

9] Planck Collaboration, “Planck 2018 results. VI. Cosmological parameters”
//arxiv.org/abs/1807.06209 (document)

5.26x 10710 J/m? (A = (4.2440.11) x 10756 cV2)
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Results

1- Vacuum energy density (VED) is finite without the need if a UV cut-off.
: . . 5 1 4
2- VED has a simple closed-form, quartic in particle rest mass. Fvac = 1042 Zﬂi?”i

3- Only 1 of Pauli’s 4 conditions is necessary and sufficient to zero out the VED. Y., gimi =0

4- Vacuum energy contributions from the fermionic fields are positive and from the
bosonic field are negative!



Discussion and Conclusions

Why is there still a discrepancy between theoretical and observational results ?

1- We may be missing the vacuum energy contribution.of at least.one unknown massive bosonic particle.

For example if we assume a scalar boson (say.a.heavy cousin of Higgs with g=1), then its mass would.be 327

GeV/c” If we assume a vector boson (say a Z-prime boson with g=3), then its mass would be about 247

E)ieV/c2 . Also it is possible there is a missing fermionic (dark matter) particle plus an even heavier missing
oson.

2- The quantum harmonic oscillator model may be too simple to describe the vacuum energy. For example,
the effect of interacting quantum fields may need to be taken into account (this work has started).

3- The gravitational field may have an important contribution. This will require an understanding of the
quantum gravity which we currently lack.

4. The effect of running of the particle masses needs to be investigated (this work has started).
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10.8 Appendix A: Theoretical Value for Vacuum Energy Density
Given (10-14), the vacuum energy density of the ZPE is

.= L Liolntl0)-L(0[Ta (44 Hi0)- L Ear =,

(10-16)

LLL Hh

Where [; is the length of the ith side of volume V inside of which the pdfllﬂ'L}rWdUL‘h are found, and
we have used slightly different labeling in the last expression to suit our immediate needs. Boundary
conditions on V give the wavelength of the nth wave (n= 1, 2, ...) in the +' direction inside as A1 =
1/n, with similar relations for the other two directions. The wave number &, ; of the nth wave s thus

2x _2xan

k. = _ (10-17)
! "Ii'.l.'l III'I

Defining Ak, =k, )/n. we have, from (10-17),
|k, Ak
= _ SN (10-18)

I, " 2an 2w

Similar results hold for /5 and /5. Thus, (10-16) (with the relativistic expression for energy used in
the last step below) is

Ak, Ak, Ak, o 2 Ak 8k, 8k,
Zuﬂ ?“’*‘u 2T 2 2 =2 21 2T 2T (10-19)

n

For {, very large, from (10-18), Ak, — dk;. with similar expressions for large {; and [ In the
limit of large [; (large volume V), (10-19) becomes

p.=| Nm’ 2 dhy di, dky =" | K% (10-20)

TRTET: = (27)

Using (9-9) on pg. 260, we find this becomes

5 f;

m® + k7 Ak dk me+ k7 kdk (10-21)

3

(27)



This 15 obwviously mfinite, unless we take an upper limit cutoff, typically considered the Planck scale
mass (energy). This i1s because a particle with energy of the Planck mass s assumed to have an
associated Compton wavelength (size of the particle) so small that its associated mass-energy forms
a microscopic black hole. Spacetime 15 not defined inside a black hole, so smaller size (larger
energy) particles may not be able to exist in our universe. Given such logic, with A = Planck mass
>>m, welfind (10-21) 1s
4

B, =—= [ m + k7 kdk = — [ Kk = L (10-22)

’ 0 27t 40 8

-

2
In natural units, the Planck mass = 1.22x10"? GeV. Thus, the theoretical value for energy density
of the vacuum 1s

(1.22x10")
p, = —a = 2.80x10™ GeV*, (10-23)
p

Note length in natural units 1s GeV'', s0 an energy per unit volume would be measured in GeV".
The experimental value for the upper limit on energy density of the vacuum s

p. <107 GeV*, (10-24)

a discrepancy between theory and experiment by a factor of more than 10", Yikes.

6] R. D. Klauber, “The Student Friendly Quantum Field Theory”, 2013.
https://www.quantumfieldtheory.info/
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