
 

 
 

 

 
Phys. Sci. Forum 2023, 3, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/psf 

Proceedings 

Bound of the Non-Commutative Parameter Based on Gravita-

tional Measurements† 

 Abdellah Touati * and Slimane Zaim 

 Département de Physique, Faculté des Sciences de la Matière, Université de Batna 1, Algeria; 

zaim69slimane@yahoo.com 

* Correspondence: touati.abph@gmail.com 

† Presented at the 2nd Electronic Conference on Universe, 16 February–2 March 2023; Available online: 

https://ecu2023.sciforum.net/. 

Abstract: In this paper, we investigate the four classical tests of general relativity in the non-commu-

tative (NC) gauge theory of gravity. Using the Seiberg-Witten (SW) map and the star product, then 

we calculate the deformed components metric �̂�𝜇𝜈(𝑟, 𝛩) of Schwarzschild black hole (SBH). The 

use of this deformed metric enables us to calculate the gravitational periastron advance of mercury, 

red-shift, deflection of light and time delay in the NC spacetime. Our result for NC prediction of the 

gravitational deflection of light and time delay shows a new behavior than the classical one. As an 

application, we use a typical primordial black hole to give an estimation to the NC parameter Θ, 

where our result shows that𝛩𝑝ℎ𝑦 ≈ 10−34 𝑚 for the gravitational red-shift, deflection of light, and 

time delay at the final stage of inflation, and 𝛩𝑝ℎ𝑦 ≈ 10−31 𝑚 for the gravitational periastron advance 

of some planets from our system solar. 
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1. Introduction 

General relativity (GR) is considered one of the major scientific discoveries at the be-

ginning of the 20th century, it describes an excellent relativistic description of gravity, 

which is one of the fundamental interactions that describe all phenomena in nature at the 

macroscopic scale. The success of this theory was due to the prediction of the experimen-

tal results of the first three tests, which are proposed by Albert Einstein in 1915, which 

were the periastron advance of mercury orbit, deflection of light, and the red-shift [1]. 

Later in 1964 I. Shapiro discovered and observed the time delay due to the presence of 

massive objects, which became another successful test of GR, which is so-called the fourth 

classical test of GR [2].  

However, this theory remains unable to describe gravity at the quantum scale, this 

problem led to the emergence of many ideas. One of them adopts the same concept of 

quantum mechanics in quantization concerning the relations of commutation between the 

observables as [�̂�𝑖 , �̂�𝑗] = −𝑖ℏ𝛿𝑖𝑗, where in this theory the coordinates of spacetime �̂�𝜇are 

considering a non-commutative observable, and subject to the commutation relation bet-

ween the coordinates themselves, namely: 

where 𝛩𝜇𝜈  is an anti-symmetric real matrix of the NC parameter, which describes 

the fundamental cell discretizing the spacetime, where the general idea of the NC geometry 

is that the quantization of the spacetime leads to the quantization of the gravity. 

Moreover, in this theory the scalar product between two arbitrary functions 𝑓(𝑥) and 

𝑔(𝑥) are changed to the star product  
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(𝑓 ∗ 𝑔)(𝑥) = 𝑓(𝑥)𝑒
𝑖

2
𝛩𝜇𝜈𝜕𝜇

 ⃖     𝜕𝜈
      

𝑔(𝑥).  (2) 

Recently, there has been a lot of research on determining a lower bound of the NC 

parameter and studies on quantum gravity effects, with several approaches [3-21]. Our 

aim is to estimate a lower bound on the NC parameter using the four classical experimental 

tests of GR inspired by the NC geometry based on the gauge theory of gravity and compared 

to the other results obtained by another approach of NC geometry [9,11]. In this study, we 

provide the NC corrections to the four classical predictions of the GR in the NC gauge 

theory of gravity. Firstly we obtain the NC periastron advance of orbit and we choose 

some planets of our solar system as examples for the numerical values of 𝛩, for the deflec-

tion of light, red-shift, and the time delay we use data of a typical primordial black hole 

at the early universe, where we use the scale factor to get a physical distance measured at 

any time [9,11], our result shows that the NC property of spacetime appears before Planck 

scale. 

In this paper, we discussed the bound of the NC parameter in the NC gauge theory 

of gravity using the four classical tests of GR. A brief review of the NC gauge theory of 

gravity for the SBH metric is presented in Sec. 2. The estimation of the NC parameter for 

different experimental tests of GR in NC spacetime is obtained and discussed in Sec. 3. In 

Sec. 4 we present our conclusion. 

2. Non-commutative corrections for Schwarzschild black hole 

In our previous works [21], we used the tetrad formalism and both the star-product 

and the SW map [22] to construct the NC gauge theory for a static metric with spherical 

symmetric. One can use the perturbation form for the SW map to describe the deformed 

tetrad fields �̂�𝜇
𝑎 as a development in the power of Θ up to the second-order, which can be 

obtained by following the same approach in Ref. [23]:  

�̂�𝜇
𝑎= 𝑒𝜇

𝑎 −
𝑖

4
𝛩𝜈𝜌[𝜔𝜈

𝑎𝑏𝜕𝜌𝑒𝜇
𝑑 + (𝜕𝜌𝜔𝜇

𝑎𝑐 + 𝑅𝜌𝜇
𝑎𝑐)𝑒𝜈

𝑑]𝜂𝑐𝑑 +
1

32
𝛩𝜈𝜌𝛩𝜆𝜏 [2{𝑅𝜏𝜈 , 𝑅𝜇𝜌}

𝑎𝑏
𝑒𝜆

𝑐 − 𝜔𝜆
𝑎𝑏(𝐷𝜌𝑅𝜏𝜈

𝑐𝑑 +

𝜕𝜌𝑅𝜏𝜈
𝑐𝑑)𝑒𝜈

𝑚𝜂𝑑𝑚 − {𝜔𝜈,(𝐷𝜌𝑅𝜏𝜈 + 𝜕𝜌𝑅𝜏𝜈)}
𝑎𝑏

𝑒𝜆
𝑐 − 𝜕𝜏{𝜔𝜈,(𝜕𝜌𝜔𝜇 + 𝑅𝜌𝜇)}

𝑎𝑏
𝑒𝜆

𝑐 − 𝜔𝜆
𝑎𝑏(𝜔𝜈

𝑐𝑑𝜕𝜌𝑒𝜇
𝑚 +

(𝜕𝜌𝜔𝜇
𝑐𝑑 + 𝑅𝜌𝜇

𝑐𝑑)𝑒𝜈
𝑚)𝜂𝑑𝑚 + 2𝜕𝜈𝜔𝜆

𝑎𝑏𝜕𝜌𝜕𝜏𝑒𝜇
𝑐 − 2𝜕𝜌(𝜕𝜏𝜔𝜇

𝑎𝑏 + 𝑅𝜏𝜇
𝑎𝑏)𝜕𝜈𝑒𝜆

𝑐 − {𝜔𝜈,(𝜕𝜌𝜔𝜆 + 𝑅𝜌𝜆)}
𝑎𝑏

𝜕𝜏𝑒𝜇
𝑐 −

(𝜕𝜏𝜔𝜇
𝑎𝑏 + 𝑅𝜏𝜇

𝑎𝑏)(𝜔𝜈
𝑐𝑑𝜕𝜌𝑒𝜇

𝑚 + (𝜕𝜌𝜔𝜆
𝑐𝑑 + 𝑅𝜌𝜆

𝑐𝑑)𝑒𝜈
𝑚𝜂𝑑𝑚)] 𝜂𝑏𝑐 , 

(3) 

where �̂�𝜇
𝑎 and 𝜔𝜇

𝑎𝑏are the tetrad field and the spin connection (gauge field), and: 

{𝛼, 𝛽}𝑎𝑏 = (𝛼𝑎𝑐𝛽𝑑𝑏 + 𝛽𝑎𝑐  𝛼𝑑𝑏)𝜂𝑐𝑑, [𝛼, 𝛽]𝑎𝑏 = (𝛼𝑎𝑐𝛽𝑑𝑏 − 𝛽𝑎𝑐  𝛼𝑑𝑏)𝜂𝑐𝑑 

D𝜇𝑅𝜌𝜎
𝑎𝑏 = 𝜕𝜇𝑅𝜌𝜎

𝑎𝑏 + (𝜔𝜇
𝑎𝑐𝑅𝜌𝜎

𝑑𝑏 + 𝜔𝜇
𝑏𝑐𝑅𝜌𝜎

𝑑𝑎). 
(4) 

The deformed metric can be written as: 

�̂�𝜇𝜈 =
1

2
(�̂�𝜇

𝑎 ∗ �̂�𝜈
𝑏†

+ �̂�𝜈
𝑎 ∗ �̂�𝜇

𝑏†
) 𝜂𝑎𝑏 . (5) 

For the SBH solution we choose the following tetrad fields 

𝑒𝜇
0 = (√1 −

2𝑚

𝑟
, 0, 0, 0),  𝑒𝜇

1 = (0,
1

√1−
2𝑚

𝑟
 

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜙, 𝑟 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜙, −𝑟 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙), 

𝑒𝜇
2 = (0,

1

√1−
2𝑚

𝑟
 

𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙, 𝑟 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜙, 𝑟 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠 𝜙), 𝑒𝜇
3 = (0,

1

√1−
2𝑚

𝑟
 

𝑐𝑜𝑠𝜃 , −𝑟 𝑠𝑖𝑛𝜃 , 0). 

(6) 

The deformed tetrad fields are calculated in Ref. [21], we follow the same steps to 

compute the deformed metric components of SBH in the equatorial plane θ =
π

2
, 
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−�̂�00 = (1 −
2𝑚

𝑟
) + {

𝑚(88𝑚2+𝑚 𝑟(−77+15√1−
2𝑚

𝑟
)−8𝑟2(−2+√1−

2𝑚

𝑟
))

16 𝑟4(𝑟−2𝑚)
} 𝛩2 + 𝑂(𝛩4),  (a-7) 

�̂�11 =
1

(1−
2𝑚

𝑟
)
− {

𝑚(12𝑚2+𝑚 𝑟(−14+√1−
2𝑚

𝑟
)−𝑟2(5+√1−

2𝑚

𝑟
))

8 𝑟2(𝑟−2𝑚)3 } 𝛩2 + 𝑂(𝛩4),         (b-7) 

�̂�22 = 𝑟2 − {
𝑚(𝑚(10−6√1−

2𝑚

𝑟
)−

8 𝑚2

𝑟
+ 𝑟(−3+5√1−

2𝑚

𝑟
))

16(𝑟−2𝑚)2 } 𝛩2 + 𝑂(𝛩4),               (c-7) 

�̂�33 = 𝑟2 −

{
 
 

 
 

5

8
−

3

8
√1 −

2𝑚

𝑟
+

𝑚(−17+
5

√1−
2𝑚
𝑟

)

16 𝑟
+

𝑚2√1−
2𝑚

𝑟

(𝑟−2𝑚)2

}
 
 

 
 

𝛩2 + 𝑂(𝛩4),         (d-7) 

where m = GM denotes the mass of the SBH. It is clear that in the limit of Θ → 0, we 

obtain the commutative SBH solution. 

3. Experemental test of GR in NC spacetime 

In this section we present the NC corrections to the four classical tests of GR using 

the deformed SBH metric as background. 

3.1. Gravitational periastron advance 

In our previous work [21], we derive the expression of the angle deviation after one 

revolution in the NC SBH metric (7), using the perturbation form of the geodesic equation 

as in Ref. [24], then we found: 

∆𝜙 =
6𝜋𝐺𝑀

𝑐2𝛼(1 − 𝑒2)
+ 𝜋Θ2 {

(𝐸0
2 − 𝑚0

2𝑐4)

2𝐺𝑀𝛼(1 − 𝑒2)
+

6(𝑚0
2𝑐2 − (𝐸0/𝑐)2)

𝛼2(1 − 𝑒2)2
+

𝑚0
2𝑐2

2𝛼2(1 − 𝑒2)2
}, (10) 

where 𝛼, 𝑒 denote the major semi-axis and the eccentricity of the movement. For numerical 

application we choose the problem of Mercury planet orbit, where the NC parameter is in 

the order: 

Θ𝑝ℎ𝑦 = √ℏΘ ≈ 5,7876. 10−31 𝑚, (11) 

as we see the NC parameter Θ𝑝ℎ𝑦 is very small for the solar system, which means that 

our solar system is very sensitive to the NC parameter. For the other planets the lower 

bound on Θ𝑝ℎ𝑦 is shown in Table 1: 

Table 1. Some observable values of orbital precession for different planets of our solar system, are 

show in columns 2. The prediction of the orbital precession in general relativity in column 3, in final 

column we give the lower bound for the non-commutative parameter Θ𝑝ℎ𝑦. 

Planet ∆𝛟𝐨𝐛𝐬(
𝐚𝐫𝐜−𝐬𝐞𝐜

𝐜𝐞𝐧𝐭𝐫𝐲
)  ∆𝛟𝐆𝐑(

𝐚𝐫𝐜−𝐬𝐞𝐜

𝐜𝐞𝐧𝐭𝐫𝐲
)  𝐋. 𝐛 𝐨𝐟 𝚯𝒑𝒉𝒚 

(× 𝟏𝟎−𝟑𝟏𝒎) 

Mercury 42.9800 ± 0,0020 42.9805 ≤ 05.7876 

Venus 8.6247 ± 0,0005 8.6283 ≤ 04.5239 

Earth 3.8387 ± 0,0004 3.8399 ≤ 04.0976 
1 The experemental data can be found in Ref [25,26]. 

As we see in Table 1, the lower bound of Θ𝑝ℎ𝑦 is in the same order for the planet's 

orbit of our solar system Θ𝑝ℎ𝑦~10−31𝑚. 
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3.2. Deflection of light 

Another successful experimental test of GR is the gravitational deflection of light 

which is predicted by Albert Einstein in his theory of gravity. In which the light is deflected 

from its original path when it passes near a strong gravitational field, the formula that 

describes this phenomenon is given by [1], and the NC expression can be read as: 

𝛥�̂� = 2 ∫
1

𝑟√�̂�00(𝑟)
(

𝑟2

𝑏2
|
�̂�00(𝑏)

�̂�00(𝑟)
| − 1) 𝑑𝑟 − 𝜋,

∞

𝑏

 (12) 

this integral can be computed after expanding our expression on the first order in m/r and 

we stop in the second order of Θ, with some calculations we get: 

𝛥�̂� =
4𝐺𝑀

𝑐2𝑏
−

5𝐺𝑀

6𝑐2𝑏3
Θ2. (13) 

As we see the first term represents the GR prediction and the second term represents 

the NC corrections to the gravitational deflection of light, where this correction should be 

smaller than the accuracy of the measurements [27], to estimate Θ for this phenomenon 

we use the radius (r~b ≈ 1.5 × 10−3 m) and the mass (GM~5 × 10−4 m) of a typical micro 

black hole, so we get 

Θ𝑝ℎ𝑦 = √𝛼2Θ2 ≤ 5,7. 10−34 𝑚, (14) 

where 𝛼 is the scale factor at the end of inflation, we multiplying our results by 𝛼2, be-

cause we use the space-space (𝛩𝑖𝑗) NC parameter [12] to obtain a physical results. It is 

worth to note that, the NC geometry change the behavior of the angle deviation, as we see 

when b → 0, the NC term dominates and the behavior of 𝛥�̂� ∝ −
1

𝑏3 changes to the nega-

tive one. 

3.3. Gravitational red-shift  

The third success experimental test of GR, which is the gravitational red-shift, where 

the shift in the spectral of light due to gravity is given in [1], and its NC form can be com-

puted using the NC deformed metric (a-7), 

�̂� = √|
�̂�00(𝑟2)

�̂�00(𝑟1)
| − 1. (15) 

For an asymptotic observer 𝑟2 → ∞, measured the red-shift for the NC SBH is given 

by �̂� : 

�̂� = 𝑧 (1 − (
𝑧+1

𝑧
) [

(88𝐺𝑀2+𝐺𝑀 𝑟1(−77+15√1−
2𝐺𝑀

𝑟1
)−8𝑟1

2(−2+√1−
2𝐺𝑀

𝑟1
))

32𝑟3(𝑟1−2𝐺𝑀)2 ] Θ2),  (16) 

where 𝑧 = ((1 −
2𝐺𝑀

𝑟1
)

−1
2⁄

− 1) is the red-shift that is predicted by the GR. We use the 

same data of micro black hole with accuracy of the measurements [28], then we get the 

bound on the Θ𝑝ℎ𝑦 parameter: 

Θ𝑝ℎ𝑦 = √𝛼2Θ2 ≤ 2,09. 10−34 𝑚, (17) 

3.3. Time delay (Shapiro effect) 

The fourth successful classical test of the GR is discovered by I.Shapiro [1,2], which 

is so-called gravitational time delay and also the Shapiro effect, where this phenomenon 

studies the necessary time for a radar signal emitting from one point to another one 
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traveling near a massive object and returning to the emitting point. Supposing now radar 

traveling from point 

𝛥�̂� = 2[�̂�(𝑟1, 𝑏) + �̂�(𝑟2, 𝑏) − √𝑏 − 𝑟1 − √𝑏 − 𝑟2], (12) 

where 

�̂�(𝑟, 𝑏) = ∫
1

�̂�00(𝑟′)
(1 −

𝑏2�̂�00(𝑟′)

𝑟′2�̂�00(𝑏)
) 𝑑𝑟′,

𝑟

𝑏

 (12) 

we expand our expression on the first order in m and we stop at the second order in 

Θ, after some calculations we obtain: 

�̂�(𝑟, 𝑏) = √𝑟2 − 𝑏2 + 2𝐺𝑀𝑙𝑛 (
𝑟 + √𝑟2 − 𝑏2

𝑏
) + 𝐺𝑀 (

𝑟 − 𝑏

𝑟 + 𝑏
)

1
2⁄

−
𝐺𝑀(3𝑏 − 4𝑟)√𝑟2 − 𝑏2

4𝑏2𝑟(𝑟 + 𝑏)
Θ2, (16) 

we take in consideration that 𝑟1 ≪ 𝑏 and 𝑟2 ≪ 𝑏, we obtain the full expression of the 

time delay in the NC spacetime: 

𝛥�̂� ≈ 4𝐺𝑀 [𝑙𝑛 (
4 𝑟1 𝑟2

𝑏2
) + 1] −

4𝐺𝑀

𝑏2
Θ2, (12) 

The same note in the behavior of time delay in the NC spacetime, when b → 0, the 

NC correction term dominates and the behavior of 𝛥�̂� ∝ −
1

𝑏2 becomes negative, and that 

means the NC geometry removes the divergent behaviors. 

For a numerical application, we take the same micro black hole data and the ratio 
4 𝑟1 𝑟2

𝑏2  is considered in the same order as in our solar system scale, with accuracy of the 

measurements [29], so we get: 

Θ𝑝ℎ𝑦 = √𝛼2Θ2 ≤ 2,57. 10−34 𝑚, (17) 

4. Conclusion 

In this paper, we investigate the four classical tests of GR in the NC spacetime. As a 

background for our calculation, we use a deformed SBH metric via the NC geometry using 

the SW maps and the star product. 

As a first step, we obtain a correction to the periastron advance of mercury up to the 

second-order in Θ [21], where our results show that the NC parameter is close to the 

Planck scale Θ𝑝ℎ𝑦~10−31𝑚 and the extend of this application to other planets of our solar 

system shows that Θ𝑝ℎ𝑦is of the same order acts as a fundamental constant of the solar 

system. Then we compute the correction to the light deflection, red-shift and time delay 

in the NC spacetime, for application we choose a data of a microscopic black hole at the 

early universe. 

Our results show that, the experimental test which uses a radio wave or a light give 

us a bound on the NC parameter in the order of Θ𝑝ℎ𝑦~10−34𝑚, where our results are 

smaller than the one obtained in Ref. [12,16] because we use a different approach. But for 

the orbital motion of a massive particle (planet), the bound on Θ  is in the order of 

Θ𝑝ℎ𝑦~10−31𝑚, and it’s remarkable that our result is close to the one obtained by using the 

classical mechanics in NC flat spacetime as Ref. [4,5]. This result indicates that the macro-

scopic system is very sensitive to the NC parameter. It is essential to mention that through 

the study of black holes thermodynamics in NC spacetime the bound on the NC parame-

ter √θ  has been obtained in some papers as in Ref. [6-9] which is expected to be 

√θ~10−1. 𝑙𝑝, using the point-like structure for the matter with the NC Gaussian distribu-

tion and gauge theory. But in this work and our privious works [21,30], we show that the 

lower bound of Θ𝑝ℎ𝑦is limited before the Planck scale between (10−31𝑚 − 10−35𝑚), where 

we use black hole thermodynamics [21] and the four classical tests of GR, which confirmes 

that the NC property of spacetime appears before Planck scale. 
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The use of the NC gauge theory of gravity enables us to obtain good results on the 

bound of the NC parameter. This theory needs more work, it may have a bright future to 

describe quantum gravity. 
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