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Abstract: Large inconsistencies in the outcome of precise measurements of Newtonian gravitational 

‘constant’ were identified throughout more than three hundred experiments conducted up to date. 

This paper illustrates the dependency of the Newtonian gravitational parameter on the curvature 

of the background and the associated field strength of vacuum energy. Additionally, the derived 

interaction field equations show that the boundary interaction of conventional and vacuum energy 

densities and their spin-spin correlations contribute to the emergent mass. Experimental conditions 

are recommended to achieve consistent outcomes of the parameter precision measurements, which 

can directly falsify or provide confirmations to the presented field equations.  
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1. Introduction 

The Newtonian gravitational ‘constant’ 𝐺 plays a crucial role in theoretical physics, 

astronomy, geophysics, and engineering. About three hundred experiments attempted to 

ascertain the value of 𝐺  up to date. However, the significant inconsistencies in their results 

have made it unfeasible to reach a consensus on an exact value. Many of them are precision 

measurements with a relative uncertainty of only 12 to 19 parts per million [1–5].  

The achievement of such a low level of uncertainty can indicate that the margin of 

systematic errors in experiments is narrower than generally anticipated. At the same time, 

the significant inconsistencies among measurements’ outcomes imply that there could be 

phenomena that are not yet accounted for in the current framework of physics. This study 

investigates the impact of the background curvature on the value of 𝐺, and the influence 

of boundary interactions and spin-spin correlations on the emergence of mass. 

2. Newtonian Gravitational Parameter  

The Sun flows in a spatially flat spacetime background, based on General Relativity, 

where its induced curvature is proportional to its energy density and flux. On the other 

hand, the Earth flows in a curved background (curved bulk) due to the Sun’s presence, 

where its induced curvature is affected by the bulk curvature, ℛ, in addition to its energy 

density and flux. To incorporate the bulk influence, a modulus of spacetime deformation, 

𝐸𝐷, is utilized. The modulus can be expressed in terms of the bulk resistance to localized 

curvature or in terms of the field strength of the bulk by using the Lagrangian formulation 

of energy density existing in the bulk as a manifestation of vacuum energy density as 

where ℱ𝜆𝜌 is the field strength tensor of the bulk and 𝜇0 is vacuum permeability.  
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By incorporating the bulk influence, the Einstein–Hilbert action can be extended to 

𝑆 = 𝐸𝐷 ∫ [
𝑅

ℛ
+

𝐿

ℒ
]√−𝑔 𝑑4𝜌

 

𝐶

 (2) 

where 𝑅 is the Ricci scalar representing a localized curvature, which is induced in the 

bulk by a celestial object that is regarded as a 4D relativistic cloud-world of metric 𝑔𝑢𝑣  

and Lagrangian density 𝐿, respectively, whereas ℛ is the scalar curvature of the 4D con-

formal bulk of metric �̃�𝜇𝜈  and Lagrangian density ℒ as its internal stresses and momenta 

reflecting its curvature. Since 𝐸𝐷  is constant with regard to the extended action under the 

constant vacuum energy density condition; and by considering the evolution of the bulk 

owing to the expansion of the Universe, a dual-action concerning the energy conservation 

on global (bulk) and local (cloud-world) scales can be introduced as follows 

  𝑆 = ∫ [
−ℱ𝜆𝜌�̃�

𝜆𝛾ℱ𝛾𝛼�̃�𝜌𝛼

4𝜇0

] √−�̃�
 

𝐵

 ∫ [
𝑅𝜇𝜈𝑔

𝜇𝜈

ℛ𝜇𝜈�̃�
𝜇𝜈

+
𝐿𝜇𝜈𝑔

𝜇𝜈

ℒ𝜇𝜈�̃�
𝜇𝜈

]
 

𝐶
√−𝑔 𝑑4𝜌 𝑑4σ (3) 

Applying the principle of stationary action in [6] yields 

𝑅𝜇𝜈

ℛ
−

1

2

𝑅

ℛ
𝑔𝜇𝜈 −

𝑅ℛ𝜇𝜈

ℛ2
+

𝑅(𝒦𝜇𝜈 −
1
2
𝒦𝓆𝜇𝜈) − ℛ(𝐾𝜇𝜈 −

1
2
𝐾�̂�𝜇𝜈)

ℛ2
=

�̂�𝜇𝜈

𝒯𝜇𝜈

 (4) 

These interaction field equations can be interpreted as indicating that the cloud-world’s 

induced curvature, 𝑅, over the bulk’s conformal (background) curvature, ℛ, equals the 

ratio of the cloud-world’s imposed energy density and its flux, �̂�𝜇𝜈, to the bulk’s vacuum 

energy density and its flux, 𝒯𝜇𝜈 , throughout the expanding/contracting Universe. The 

field equations can describe the interaction and flow of a 4D relativistic cloud-world of 

intrinsic 𝑅𝜇𝜈 and extrinsic 𝐾𝜇𝜈  curvatures through a 4D conformal bulk of intrinsic ℛ𝜇𝜈  

and extrinsic 𝒦𝜇𝜈  curvatures. The boundary term given by the extrinsic curvatures of the 

cloud-world and bulk is only significant at high energies when the difference between the 

induced and background curvatures is significant. By transforming intrinsic and extrinsic 

curvatures of the bulk [6], comparing Einstein field equations with Equation (1) and then 

substituting to Equation (4), the interaction field equations can be simplified to 

𝑅𝜇𝜈 −
1

2
𝑅�̂�𝜇𝜈 − (𝐾𝜇𝜈 −

1

2
𝐾�̂�𝜇𝜈)  =

8𝜋𝐺ℛ

𝑐4
�̂�𝜇𝜈 (5) 

where �̂�𝜇𝜈 = 𝑔𝜇𝜈 + 2ℛ𝜇𝜈/ℛ − 2�̿�𝜇𝜈 , or can be expressed as �̂�𝜇𝜈 = 𝑔𝜇𝜈 + 2�̃�𝜇𝜈 − 2�̿�𝜇𝜈  be-

cause ℛ𝜇𝜈/ℛ = ℛ𝜇𝜈/ℛ𝜇𝜈�̃�
𝜇𝜈 = �̃�𝜇𝜈 , is the conformally transformed metric, which takes 

into account contributions from the cloud-world metric, 𝑔𝜇𝜈 , as well as the intrinsic and 

extrinsic curvatures of the bulk based on its metrics, �̃�𝜇𝜈  and  �̿�𝜇𝜈  (intrinsic-equivalent 

metric) respectively, whereas Einstein spaces are a subclass of the conformal space [7].  

�̂�𝜇𝜈 = 𝑇𝜇𝜈 − 𝑡𝜇𝜈 = (2𝐿𝜇𝜈 − 𝐿�̂�𝜇𝜈) − (2𝑙𝜇𝜈 − 𝑙�̂�𝜇𝜈) is a conformal stress-energy tensor that is 

defined by including the Lagrangian of the energy density and flux of the cloud-world, 

𝑇𝜇𝜈, and the electromagnetic energy flux from its boundary, 𝑡𝜇𝜈, over the conformal time. 

These interaction field equations could remove the singularities and satisfy a conformal 

invariance theory. From Equations (5) and (1), the Newtonian gravitational parameter is 

 𝐺ℛ =
𝑐4

8𝜋𝐸𝐷

ℛ (6) 

where ℛ = ℛ𝜇𝜈�̃�
𝜇𝜈  is the scalar curvature of the bulk. According to Equation (6), 𝐺ℛ is 

proportional to ℛ and reflects the field strength of vacuum energy because any changes 

in the bulk’s metric, �̃�𝜇𝜈 ∶= ℛ, changes the field strength of the bulk, ℱ𝜆𝜌, because of the 

constant modulus, 𝐸𝐷 = −ℱ𝜆𝜌�̃�
𝜆𝛾ℱ𝛾𝛼�̃�𝜌𝛼/4𝜇0. In addition, although the ground state of 

ℛ at the local present Universe appears to be spatially flat, it could have a small temporal 

curvature reflecting the present value of 𝐺. The dependency of 𝐺ℛ on the curvature of 

the bulk is discussed and visualized as follows.  
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Regarding the Earth, Figure 1 shows the curvature of its background, the curved bulk 

owing to the Sun’s presence. In this curved background, both Earth and Moon are further 

inducing different curvature configurations depending on their positions. For instance, at 

Point A, the Earth’s background curvature is influenced by the Moon’s position as shown 

by the blue and red-dotted curves. As the background curvature has different values at 

this point, 𝐺ℛ is predicted to have different values according to Equation (6). In addition, 

other nearby planets can influence the background curvature configuration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The blue curve represents the induced curvature by the Sun, which signifies the curvature of the background 

with respect to the Earth and Moon. Concerning both planets, they in turn are inducing further curvature in their back-

ground as visualized beneath them by the blue curve. On the other hand, when the Moon is at the away position (dotted 

circles), an altered induced curvature configuration is shown by the red dotted curve. 

Figure 2 shows six of 𝐺ℛ  values by measurements: BIPM-14 [8], BIPM-01 [9], UCI-14 [10], 

UZur-06 [11], JILA-10 [12] and HUST-05 [13]. These values were among those adopted in 

the CODATA (Committee on Data for Science and Technology) 2014 of the recommended   

value of (6.67408 ± 0.00031) x10−11 𝑚3 𝑘𝑔−1 𝑠−2 [14].  

 

Figure 2. Six of 𝐺 values among those that were adopted in the CODATA 2014 recommended value. 

A one-way ANOVA test was performed on these precision measurements, resulting in an 

F-statistic of 302.089 and a p-value of 0.000, which indicates strong evidence against the 

null hypothesis. This signifies that there is a significant difference in the variances of these 

measurements. Despite the small relative uncertainty in the measurements, the significant 

differences in their outcomes that puzzled scientists [1] can be attributed to the differences 

in the curvature of the bulk at the time that the measurements were conducted, as stated 

in Equation (6), owing to varied positions of the Moon and other nearby planets. 

Sun Earth 

The Moon is away from 

the Sun and Earth The Moon is in between 

the Sun and Earth 

The difference in the induced 

curvature depending on the 

position of the Moon 

Point A 

The induced curvature by the 

Sun, which represents Earth’s 

background curvature  

𝐺ℛ(x10−11 𝑚3 𝑘𝑔−1 𝑠−2) 
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3. Emergence of Mass 

Analogous to the constant bulk’s modulus, −ℱ𝜆𝜌ℱ
𝜆𝜌/4𝜇0, the curvature of the bulk, 

including that which is conformal, ℛ𝜇𝜈�̃�
𝜇𝜈, and induced by a celestial object, 𝑅𝜇𝜈𝑔

𝜇𝜈 , can 

be considered constant regarding quantum fields, 𝐿𝛼𝛽𝐿𝛼𝛽/2𝜒0. Consequently, the action 

in Equation (3) can be extended in terms of quantum waves, as follows  

         𝑆 =  ∫ [
−ℱ𝜆𝜌�̃�

𝜆𝛾ℱ𝛾𝛼�̃�𝜌𝛼

4𝜇0

] √−�̃�
 

𝐵

∫ [
𝑅𝜇𝜈𝑔

𝜇𝜈

ℛ𝜇𝜈�̃�
𝜇𝜈

] √−𝑔
 

𝐶

 ∫ [
𝑝𝜇𝑝𝑣𝑞

𝜇𝜈

𝜋𝜇𝜋𝑣𝑔
𝜇𝜈

+
𝐿𝛼𝛽𝑞𝛼𝜆𝐿𝜆𝛾𝑞

𝛽𝛾

2𝜒0ℒ𝜇𝜈𝑔
𝜇𝜈

]
 

𝑄
√−𝑞 𝜗2𝑑12σ  (7) 

where 𝐿𝛼𝛽𝐿𝛼𝛽/2𝜒0 are the Lagrangian densities of two entangled quantum fields that are   

regarded as 4D relativistic quantum clouds of a metric 𝑞𝜇𝜈  and four-momentum 𝑝𝜇𝑝
𝜈, 

respectively, 𝜒
0
 is a proportionality constant and 𝜗2 is a dimensional-hierarchy factor;  

while 𝜋𝜇𝜋
𝜈 are the four-momentum of the vacuum energy density of a Lagrangian den-

sity ℒ𝜇𝜈𝑔
𝜇𝜈 . By applying the principle of stationary action, separating the two entangled 

quantum clouds and utilizing the dimensional analysis, give 

   𝑝𝜇 −
1

2
𝑝𝜈𝑞𝜇𝜈 − 𝑝𝜈�̃�𝜇𝜈 − (𝐽𝜇𝐴𝜇 −

1

2
𝐽𝜇𝐴𝜈𝜁𝜇𝜈) +

𝑝𝜈

𝜋𝜈
(𝒥𝜇𝒜𝜇 −

1

2
𝒥𝜇𝒜𝜈𝜍𝜇𝜈) =

ℏ𝐺ℛ

2𝑐2𝑔𝑅

𝒯𝜇     (8) 

where ℏ is Planck constant, 𝐽𝜇 is the four current flux from the quantum cloud boundary, 
𝑔𝑅 is the gravitational field strength of its parent cloud-world and 𝒯𝜇  denotes the energy 

density and flux of the quantum cloud of a deformed configuration as shown in Figure 3, 

where 𝒯𝑛 is the traction vector on the inner surface 𝑆𝑖 and 𝑛 is the unit normal vector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. The deformed configuration of the 4D relativistic quantum cloud (quantum field) of metric 

𝑞𝜇𝜈 along its travel and spin through the curved background of metric �̃�𝜇𝜈. The configuration is 

given by, 𝑆𝑖, the inner surface of the quantum cloud that separates its continuum into two portions 

and encloses an arbitrary inner volume while 𝑆𝑜 is the outer surface of the cloud’s boundary.  

As the gravitational field strength of the cloud-world of mass 𝑀  and at curvature radius 

𝑅 is 𝑔𝑅 = 𝑀𝐺ℛ/𝑅2, a plane wavefunction, 𝜓 = 𝐴𝑒−𝑖(𝜔𝑡−𝑘𝑥), can be expressed by utilizing 

Equation (8) as 𝜓 = 𝐴𝑒−𝑖(𝑅2/2𝑀𝑐2) 𝑇𝜇𝑥𝜇
, consequently, the quantized field equations are 

            𝑖ℏ𝛾𝜇𝜕𝜇𝜓 −
1

2
𝑖ℏ𝛾𝜇𝜕𝜈(𝑞𝜇𝜈 + 2�̃�𝜇𝜈)𝜓 − (𝐽𝜇𝐴𝜇 −

1

2
𝐽𝜇𝐴𝜈𝜁𝜇𝜈)𝜓

 + (𝒥𝜇𝒜𝜇 −
1

2
𝒥𝜇𝒜𝜈𝜍𝜇𝜈)𝑖ℏ𝛾𝜇𝜕𝜈𝜓/𝜋𝜈 =

1

2

ℏ

𝑥𝜇
𝑅𝜕𝑅𝜓  (9) 

where 𝛾𝜇𝜕𝜈𝜓/𝜋𝜈 signifies the spin-spin correlation of conventional, 𝛾𝜇𝜕𝜈𝜓, and vacuum 

energy fields, 𝜋𝜈. Although 𝜋𝜇𝜋
𝜈 are the two entangled fields signifying the momentum 

of vacuum energy density that could be of a total zero spin, 𝜋𝜈 signifies a single field of 

vacuum energy of a possible spin, which can be conjectured as an analogue of a part of the 

singlet Cooper pair of a total zero spin. This reveals that the spin-spin correlation and the 

bulk’s boundary interactions, 𝒥𝜇𝒜𝜇, contribute to the emergence of mass. 
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4. Geometric-Abstraction Reduction 

The field equations in Equation (8) with implicit bulk boundary term in [6] are 

 �̂�𝜇𝜓 −
1

2
�̂�𝜈𝜉𝜇𝜈𝜓 − (𝐽𝜇𝐴𝜇 −

1

2
𝐽𝜇𝐴𝜈𝜁𝜇𝜈)𝜓 =

ℏ𝐺ℛ

2𝑐2𝑔𝑅

�̂�𝜇𝜓  (10) 

where 𝜉𝜇𝜈 = 𝑞𝜇𝜈 + 2�̃�𝜇𝜈 − 2�̿�𝜇𝜈 is the conformally transformed metric tensor counting for 

the quantum cloud’s metric, 𝑞𝜇𝜈 , in addition to contributions from intrinsic and extrinsic 

curvatures of the bulk based on its metrics �̃�𝜇𝜈  and �̿�𝜇𝜈  (intrinsic-equivalent) respectively. 

Similarly, 𝜁𝜇𝜈 = 𝑒𝜇𝜈 + 2�̃�𝜇𝜈 − 2�̿�𝜇𝜈  is the conformally induced metric on the quantum 

cloud boundary. From Equation (10), the expected value of the quantum cloud’s volume 

is 𝑉 = ℏ𝐺ℛ/𝑐𝑔𝑅. This reveals that the quantum cloud’s volume is quantized and is reliant 

on the gravitational strength of the parent cloud-world. By quantizing field equations as 

 𝑖ℏ𝛾𝜇𝜕𝜇𝜓 −
1

2
𝑖ℏ𝛾𝜇𝜕𝜈𝜂𝜇𝜈𝜓

 − (𝐽𝜇𝐴𝜇 −
1

2
𝐽𝜇𝐴𝜈𝜁𝜇𝜈)𝜓 =

ℏ𝐺

2𝑐2𝑔 

𝒯𝜇𝜓  (11) 

The quantized field equations can be utilized to reproduce quantum electrodynamics by 

using an undeformed configuration of the quantum cloud given by the Minkowski metric, 

𝑞𝜇𝜈 → 𝜂𝜇𝜈, of metric signature (+,−,−,−) and using 𝐺 as a Newtonian present value. For 

a single electron of mass 𝑚 and by considering it as having the same properties from all 

directions, the stress-energy tensor of the quantum cloud is then 𝒯𝜇 = 𝑚𝑐2/𝑉 = 𝑚𝑔𝑐3/ℏ𝐺. 

Accordingly, the quantizing field equations are 

𝑖ℏ𝛾𝜇 (
𝜕𝑡

𝑐
+ �⃗� )𝜓 −

1

2
𝑖ℏ𝛾𝜇 (

𝜕𝑡

𝑐
− �⃗� ) (1, −1,−1,−1)𝜓 − (𝐽𝜇𝐴𝜇 −

1

2
𝐽𝜇𝐴𝜈𝜁𝜇𝜈)𝜓 =

1

2
𝑚𝑐𝜓  (12) 

By applying the same metric approach for the boundary term as follows 

  
1

2
𝑖ℏ𝛾𝜇 (

𝜕𝑡

𝑐
+ �⃗� )𝜓 −

1

2
𝑒�̅�𝛾𝜇𝜓𝐴𝜇𝜓 =

1

2
𝑚𝑐𝜓 (13) 

where 𝐽𝜇 = 𝑒�̅�𝛾𝜇𝜓 is the four-current density, and 𝑒 is the charge of a single electron. 

Equation (13) can be reformatted to 

𝑖ℏ𝛾𝜇𝜕𝜇𝜓 − 𝑚𝑐𝜓 = 𝑒𝛾𝜇𝐴𝜇𝜓  (14) 

which resembles the Dirac equation and the interaction with the electromagnetic field. 

5. Conclusions and Future Experiment Recommendations  

To date, about three hundred experiments have attempted to determine the value of 

𝐺ℛ, with many of them being precision measurements. However, the significant inconsist-

encies in their outcomes have made it unfeasible to reach a consensus on an exact value, 

which puzzled scientists.  

The derived interaction field equations demonstrated the dependency of 𝐺ℛ on the 

background curvature and the associated field strength of vacuum energy. Additionally, 

the equations revealed that the boundary interactions of conventional and vacuum energy 

densities and their spin-spin correlations contribute to the emergence of mass.  

To achieve consistent 𝐺ℛ measurements, it is necessary to consider the positions of 

the Moon and other nearby planets, as they can influence the curvature of the background. 

Variations in background curvature can significantly contribute to observed differences in 

the precision measurements according to the derived interaction field equations, and it is 

essential to determine the extent of their impact on measurement variability. Future preci-

sion experiments should aim to address this issue of inconsistent 𝐺ℛ measurements by 

accounting for the influence of these celestial bodies. One simple approach could be to 

conduct measurements twice, with one set taken when the Moon is on the horizon and 

another set taken when it is on the opposite side of the Earth. Finally, to ensure higher 

consistency in the measurements, the positions of nearby planets can also be considered. 

Conflicts of Interest: The author declares no conflicts of interest. 
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