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Abstract. Synthesis of organic molecules is one of the most essential tasks in organic chemistry. The 

standard methodology started by a chemist solving a problem centered on experience, heuristics, and 

rules of thumb. Generally, experimentalists often work backward, starting with the molecule desired 

design and then analyzing the retrosynthesis in which readily available reagents and sequences of 

reactions could be used to produce it. All this his process is time-consuming and source- consuming, it 
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can result in non-optimized solutions or even failure in finding reaction pathways because of human 

errors. In this sense, AI/ML (Artificial Intelligence/Machine Learning) is gaining more and more 

attention in organic chemistry because it can speed up this process. In this mini-Review provided a guide 

map to review the digitalization and computerization of organic chemistry principles. 

 

Synthesis of organic molecules is one of the most essential tasks in organic chemistry. The standard 

methodology started by a chemist solving a problem centered on experience, heuristics, and rules of 

thumb. If researchers propose a new drug, there are two main steps: target molecule designing and 

reaction pathways to synthesize it. Generally, experimentalists often work backward, starting with the 

molecule desired design and then analyzing the retrosynthesis in which readily available reagents and 

sequences of reactions could be used to produce it. All this his process is time-consuming and source- 

consuming, it can result in non-optimized solutions or even failure in finding reaction pathways because 

of human errors.1 In this sense, AI/ML is gaining more and more attention in organic chemistry  because 

it can speed up this process. In this mini-Review provided a guide map and intrigue chemists to revisit 

the digitalization and computerization of organic chemistry principles. 

 

         Jamison et al. 2 proposed a new synthesis routes and automated the synthesis of 15 small molecules. 

It included warfarin, celecoxib, and quinapril. A typical AI-driven synthesis of the NSAID celecoxib. 

The author used several robot-controlled common known reaction bays, such as the Claisen 

condensation of 4-methyl acetophenone with methyl trifluoroacetate which led the first two modules. 

Then, the final condensation with hydrazine to yield celecoxib in a fully automated synthesis. Similar, 

they utilized this tool in order to the synthesis planning and execution of a library of ACE inhibitors and 

analogues of celecoxib with a productivity of 342 to 572 mg/h of the final small molecules. The main 

disadvantages of this approach is the limitations of the current system. It involved the handling of poorly 

soluble compounds, batch purifications of final compounds, and subambient temperatures realization, 

as it was observed in the automated synthesis of bezafibrate. In this scenario, the AI-driven synthesis 

planning provided an interesting approach via a Bargellini reaction of chloroform, acetone, and phenol, 

which could not be performed using the flow approach. Nevetheless, the synthetic feasibility of the 

synthesis route was confirmed by the authors in 76% yield, which highlights the power of AI-driven 

organic synthesis. 3 

 

           Another example within this topic, Miller et al. presented OrbNet Denali, a ML model for an 

electronic structure that was designed as a direct replacement for density functional theory (DFT) energy 

calculations. This model is a message-passing graph neural network that utilize symmetry adapted 

atomic orbital features from quantum calculation to predict the molecule energy. OrbNet Denali was 

trained on a massive dataset of 2.3 × 106 DFT calculations of molecules and geometries. The model was 

confirmed in several deep-rooted benchmark datasets, and they found that it provided accuracy that was 

on par with modern DFT methods while offering a speed of up to three orders of magnitude. For the 

GMTKN55 benchmark set, OrbNet Denali achieved WTMAD-1 and WTMAD-2 scores of 7.19 and 

9.84, on par with modern DFT functionals, respectively. For the Hutchison conformer benchmark set, 

OrbNet Denali had a median correlation coefficient of R2 = 0.90 compared to the reference DLPNO-

CCSD(T) calculation and R2 = 0.97 compared to the ωB97X-D3/def2- TZVP method. Similarly, the 

model reached chemical accuracy for non-covalent interactions in the S66x10 dataset. For torsional 

profiles, OrbNet Denali reproduced the torsion profiles of ωB97X-D3/def2-TZVP with an average mean 
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absolute error of 0.12 kcal/mol for the potential energy surfaces of the diverse fragments in the 

TorsionNet 500 dataset.4 

         As last example, Cronin and et al. developed an ML-guided feedback loop to explore synthetic 

space with a designed liquid-handling robot.5 They designated a Suzuki–Miyaura cross-coupling to 

study the influence of their ML approach in terms of chemical yield prediction. There are 35 different 

types of organic molecules (reactants, ligands, bases, and solvents) in this space. thus OHE (One-Hot 

Encoding) defines each specific reaction by a unique 35-digit binary vector. They obtained in training 

series with 60% of the entire synthetic space (3456 reactions of 5760 possibilities). The neural network 

model in training series gave a root-mean-square error (RMSE) of 11% for a test set of 1728 

transformations. This success of OHE highly relied on the fairly large training set. Furthermore, the 

trained model can capture the statistical patterns of the training data, specifically the presence of which 

compound or groups of compounds can increase or decrease the reaction yield, enabling the predicting 

of the reaction yield.6 

 

       To conclude, the use of AI/ML is experimenting a revolution in the vast majority of fields. 

Especially, the advanced in AI/ML prediction inorganic synthesis, the impact of the data-driven research 

paradigm in synthetic chemistry is apparent. The digitalization, computerization, and especially 

intellectualization of synthetic transformations will provide a strong momentum to push the frontiers of 

organic synthesis However, it is worth mentioning that, the knowledge source of organic synthesis is 

usually giving by human beings. This allows the installation of explicit rules in ML modelling, such as 

selecting chemically meaningful descriptors or the assignment of transition-state-like geometries. In 

addition, chemical statistics itself contains rich knowledge, which can be learned by machines to support 

the performance prediction of a target transformation.6  
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