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Abstract: Water resources are becoming scarce due to climate change and anthropogenic activity, 

necessitating immediate action. The first step in conserving our water supplies is to manage them 

mindfully and sustainably. To achieve this, water sources must be monitored, mapped, and evalu-

ated regularly. Updating national water maps using conventional methods can be a challenging 

task. Most of the obstacles have been addressed due to recent breakthroughs in the remote sensing 

field. In this study, we benefit from the remote sensing data integrated into Google Earth Engine 

(GEE) for developing an application for mapping Türkiye's national inland water bodies. To achieve 

this, we explored the recently developed Multi-Band Water Index (MBWI) in GEE using Sentinel-2 

satellite imagery and then applied it over the research area. The results showed that GEE is a prom-

ising application for dealing with large amounts of satellite data and can accurately extract water 

bodies on a national scale. The results might be helpful for various administrative applications that 

require up-to-date water information. The developed application can be used over different study 

areas and for spatiotemporal analysis. 
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1. Introduction 

Water sustainability is critical for the well-being of all organisms on Earth and the 

Earth herself. Water resources are becoming scarce due to climate change and anthropo-

genic activity, necessitating immediate action. The first step in maintaining our water sup-

plies is to practice conscious management and long-term solutions. Water sources must 

be monitored, mapped, and evaluated regularly to achieve this. While traditional meth-

ods for monitoring water regions are costly and difficult, remote sensing provides an al-

ternative. Remote sensing techniques and data have been employed for more than four 

decades as an alternative to costly and time-consuming traditional methods for water sur-

face mapping and monitoring. Over the years, many attempts have been made to correctly 

collect surface water, and researchers are continually creating alternative models for im-

proved accuracy in diverse study locations. The most widely used water extraction index, 

the Normalized Difference Water Index (NDWI) [1], is based on the difference between 

the maximum reflectance of the surface water in the green band non-water surfaces in the 

near-infrared band, has been successfully used in many studies. Several modifications 

have been made to improve the results [2]. 

Furthermore, the limitation of the mentioned indices has been resolved with the de-

velopment of multiband water indices [3-5]. The most recently developed water index is 

Multi-Band Water Index (MBWI) [6] which outperforms the previously developed indi-

ces. Besides indices, several models have been developed for minimizing misclassification 
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noise, such as shadows in urban areas [7] or mountainous regions [8]. Remote sensing 

data and techniques combined with such indices and models have been used for various 

water-related studies such as water dynamics monitoring [9], water quality [10], flood 

mapping [11], etc. It should be noted that most studies are done over small study areas 

and this limitation is caused by processing big data [12]. Following the recent develop-

ments, these limitations can be easily overcome using the cloud platform Google Earth 

Engine (GEE). GEE, a cloud computing platform, has been used in the past few years for 

various water studies such as dynamics monitoring [13], surface water extraction and spa-

tio-temporal water changes [14]. In this study, we use GEE for large-scale surface water 

mapping over Türkiye using Sentinel-2 satellite imagery. 

2. Materials and Methods 

2.1. Study Area 

The Republic of Türkiye is connecting the Euro-Asian continents (Figure 1). It is a 

peninsula surrounded by three seas: the Black Sea in the north of Türkiye, the Mediterra-

nean Sea in the south and the Aegean Sea in the west. Türkiye has a mountainous and 

rugged terrain and constitutes approximately 770,760 km² of land and 9,820 km² of water. 

Among the water areas, Van Lake is the largest natural lake with 3713 km², and Atatürk 

Dam is the largest artificial lake with 817 km². 

 

Figure 1. Türkiye—Study area. 

2.2. Materials and Methods 

The European Commission develops Copernicus satellites in partnership with the 

European Space Agency (ESA). It includes all-weather radar images from Sentinel-1A and 

Sentinel-1B, high-resolution optical images from Sentinel 2A and 2B, as well as ocean and 

land data from Sentinel 3 suitable for environmental and climate monitoring. Sentinel-2 

is a wide-field, high-resolution, multi-spectral imaging that supports Copernicus Land 

Monitoring, including monitoring of vegetation, soil and water cover, as well as observa-

tion of inland waterways and coastal areas. Sentinel-2 consists of 13 Bands and outper-

forms the Landsat program in spatial and spectral resolution. 

For the purposes of this study, a total of 2806 Sentinel-2 satellite data were used. The 

Sentinel-2 data was pre-processed based on region, date, and cloud mask filtering. As a 

result, the imagery was restricted to Türkiye`s borders and dates throughout the summer 

of 2020, with a 10% cloud filter mask added. Using this method, a clean Sentinel-2 picture 

collection over Türkiye was produced. Considering the vast study area, a small number 

Sea 
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of training and testing samples have been selected of the water (90) and non-water classes 

(190).  

MBWI was chosen for water classification since it produced the best results in the 

literature among index index-based algorithms. MBWI is based on distinctions between 

water and other low reflectance surfaces, restricting the brightness value ranges used to 

those in the lower or "darker" section of the terrestrial spectral range characteristic of wa-

ter. The MBWI is intended to limit non-water pixels while improving surface water infor-

mation. Wang et al. provide detailed details of the concept [6] and the calculation of MBWI 

is given in Eq. 1. In addition, to get rid of mountainous shadows that were mistakenly 

classified as water bodies, we put a threshold of 5% slope over the study area, and areas 

with higher slope, were automatically excluded from the water class.  

MBWI = 2 x Green – Red – NIR – SWIR1 – SWIR2 (1) 

In remote sensing analysis, accuracy assessment is a critical evaluator for the results. 

Thus, in this study, the validation was made using 100 random sample points from the 

water class. Two measures of accuracy were tested in this study, namely overall accuracy 

and Kappa coefficient. While overall accuracy gives information about the proportion of 

the correctly mapped reference sites, the Kappa Coefficient is generated from a statistical 

test to evaluate the accuracy of the classification. Kappa essentially evaluates how well 

the classification performed as compared to just randomly assigning values. The Kappa 

Coefficient can range from -1 to 1. In remote sensing applications with middle-spatial res-

olution as Landsat, Kappa higher than 0.75 is considered acceptable.  

3. Results and Discussion 

The study area's surface water bodies were extracted with the employed methodol-

ogy. As a result, we extracted the water bodies in Türkiye in the summer of 2020. The 

visual inspection showed that the classification gave good results taken in consideration 

vast study area. In water extraction studies, the areas with high slope and urban areas are 

the most challenging, however, the developed algorithm showed good results in these 

areas as well.  

 

Figure 2. Results. 

The accuracy assessment showed an overall accuracy of the water bodies classifica-

tion of 0.94, meaning that 94% of the water areas, were classified correctly. The kappa 
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statistics gave significant high value of 0.86. For a vast area, the obtained results are ac-

ceptable and very important from several points of view. As the methodology is devel-

oped in GEE, it can be used repeatedly on different dates, smaller study areas etc., giving 

fast and reliable information on the water bodies. The water areas can be easily calculated, 

and spatio-temporal analysis can be made using the same algorithm. With a small modi-

fication, the application can be set to use Landsat data, allowing us to analyze the water 

bodies for 5 decades. Also, here in this study, we classify the water bodies in the summer 

of 2020. The same application can be used for near-real time applications. The biggest dis-

advantage in the presented study is the spatial resolution of the used satellite imagery, 

which is 10 m in this case. This means that the algorithm is only able to classify water 

bodies that are larger than 10 m, or very small water bodies will not be extracted. How-

ever, the obtained results can be useful in various applications and can give the user a 

clear image of the water bodies over the study area. The results again showed that GEE is 

a powerful platform able to classify vast areas within a few minutes.  
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