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Abstract: To meet the demand for increasing global food production while using limited water re-

sources, crop water stress must be improved in agriculture. Remote sensing-based plant stress indi-

cators have the benefit of high spatial resolutions, cheap cost, and short turnaround times. This 

study discusses current advancements in agricultural water stress monitoring, irrigation schedul-

ing, some of the challenges met, and upcoming research needs. Remote sensing systems are pre-

pared to handle the intricate and technical evaluation of agricultural productivity, security, & crop 

water stress quickly and effectively. We explore the use of remote-sensing systems in the evaluation 

of crop water stress by looking at existing research, technologies, and data. The study examines the 

connection between relative water content (RWC), equivalent water thickness (EWT), and agricul-

tural water stress. Using remote sensing, evapotranspiration and sun-induced chlorophyll content 

are examined in connection to crop drought. Spectral indices, remote sensing satellites, and multi-

spectral sensing systems, as well as systems that measure land surface temperature, are examined. 

This critical study focuses on cutting-edge techniques for assessing crop water stress. 

Keywords: crop water stress; spectral indices; multi-spectral; remote sensing satellites; thermomet-

ric sensing 

 

1. Introduction 

Arid regions have discovered creative solutions to meet their crop needs based on 

their growth phases, kind, and environmental circumstances, which leads to appreciable 

yield improvements. A deficiency of irrigation water will cause agricultural water stress 

at various times of the crop cycle and under various environmental conditions. The pri-

mary impact is felt in the rate of photosynthesis, which further causes disturbance in rates 

of transpiration [1,2].  

Remote sensing collects information from crops, soil, and ambient elements without 

direct physical contact [3]. Through the quick identification of crop growth changes that 

are frequently missed by conventional approaches, it has improved and optimized agri-

cultural production [4]. A highly accurate determination of crop temperature is made pos-

sible by the remote sensing system, which also gives particular information important in 

the study of irrigation scheduling, quantity, and duration [5]. Systems for remote sensing 

can be divided into sensor-based and platform-based systems. Two types of sensors may 

record reflectivity inside the electromagnetic (EM) spectrum: active sensors and passive 

sensors. The sensor is mounted on a variety of remote sensing platforms, including 

ground vehicles, aircraft, satellites, and handheld devices [6]. 
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Precision irrigation scheduling requires the assessment of crop water stress, one of 

the elements that characterize how a crop interacts with its environment [7]. The CWS 

came to be recognized as a common indicator for evaluating stress on the leaf and canopy 

scales. This was a better way to analyze water stress at plot and regional scales, including 

evapotranspiration, on a greater scale. Implementing effective irrigation scheduling tech-

niques is crucial for increasing water savings and improving agricultural sustainability 

[8]. Remote sensing data can reveal information on the geographical and temporal varia-

tions of crops [9,10]. Precision agriculture uses spectral reflectance indices from high-res-

olution hyperspectral sensors on small, unmanned aircraft systems to monitor crop water 

status and plan irrigation [11]. 

The assessment of crop water deficit using remote sensing devices was the subject of 

this review. The paper supplies an overview of the many remote sensing systems that can 

be used to find crop water stress. Optical, thermometric, land-surface temperature, multi-

spectral (spaceborne and airborne), hyperspectral, and LiDAR sensing systems are exam-

ined. A consensus about the use of vegetation indices (VIs) as a pre-visual indicator of 

water stress has not yet been reached, due to several confounding factors affecting VIs at 

the canopy & landscape scales. This research discusses current developments in crop wa-

ter stress monitoring that may be applied to enhance vegetable crop irrigation scheduling 

and looks to figure out the most promising method for widespread implementation. To 

forecast production conditions and schedule irrigation, crop water stress needs to be de-

tected during various growth seasons. It has been researched how to distinguish agricul-

tural water stress using several methodologies. These techniques rely on remote sensing, 

measurements of soil water content, and plant responses. The study also considers the fact 

that different approaches are effectively used for different crops. 

2. Comparison of Crop Water Stress Detection Methods 

Table 1. Comparison of Crop Water Stress Detection Methods. 

Methods Description Advantages Disadvantages References 

Gravimetric  

Method  

A straightforward technique that 

involves weighing a wet sample, 

drying it in an oven, reweighing it, 

and then estimating the amount of 

water loss as a percentage of the dry 

soil quantity 

Highly precise and reliable technique 

with hardly any room for 

instrumental error not affected by 

salinity or soil type 

Time-consuming, dependent on mass 

measurements, destructive, and 

labor-intensive 

[12,13] 

Time domain  

reflectometer  

(TDR) 

An electromagnetic method based on 

the idea that water and other 

materials, such as soil, have different 

dielectric constants. 

Less time-consuming and damaging 

than gravimetric techniques and 

reduce labor expenses. 

Environmentally sensitive, expensive 

equipment, and calibration 

dependent on soil texture 

[12,13] 

Neutron Probe 

method 

evaluates the soil’s volumetric water 

content 

High accuracy; permits observations 

at various depths; rather simple 

Expensive equipment Licensing and 

monitoring required time-consuming 
[12,14] 

Tensiometer method Soil water potential based 

Cheap, affordable, easy to install, 

accurate, and for irrigation 

scheduling 

Requires in contact with soil and 

destructive 
[12,14] 

Vegetation indices  

method by remote 

sensing (VIs) 

Indicators of vegetation are used to 

illustrate its properties. 

The high temporal and spectral 

resolution, non-destructive 

Precision decreases from leaf scale to 

canopy scale and image analysis is a 

difficult task 

[15,16] 

Water Indices by  

remote sensing 

determines the reflectance in the 

SWIR and near-infrared range, which 

is used to indicate the water content 

of the canopy. Typical indices include 

WI, SRWI, NDWI, and MSI. 

Leaf water content may be measured 

without causing damage. excellent 

direct signs of water stress 

The difficulty of ascending to the 

canopy level 
[17] 

Water balance indices 

monitors changes in the chlorophyll 

fluorescence and water content of the 

leaves using the green and SWIR 

spectral bands. The calculated indices 

are WABI, WABI-1, and WABI-2. 

Exhibited excellent performance at 

the leaf & canopy level. 

It is necessary to use an expensive 

single-spectrum instrument. The 

penetrability of the SWIR band 

through heavy atmospheric layers is 

a problem 

[17] 
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RS-based ET 

estimation  

by Energy balance 

The surface energy balance equation 

LE = Rn-G-H Latent Energy includes 

ET as a residual (LE) Rn = Net Sky 

Radiation G = Ground to Air; H = 

Heat to Air 

A single thermal band with the 

excellent resolution is sufficient and 

needed. 

METRIC and SEBAL have good 

consistency and accuracy. 

Possible to derive ET is a difficult 

task. Since ET cannot be measured 

directly, Thermal imaging with high 

resolution is essential. 

[18] 

CWSI by infrared  

thermometer 

The canopy temperature and its 

decrease with the ambient air 

temperature are used to calculate 

CWSI. 

depends on the direct technique and 

VPD 

Different baselines must be 

calculated for various crops; this 

takes time. To evaluate CWSI, many 

factors must be considered. 

[19] 

LST based CWSI 
Utilizing LST and the hot-and-cold 

pixels approach to calculate CWSI 

Using only remote sensing methods 

Work and time are non-intensive 

Depending on this method to 

calculate LST, LST computation is 

laborious and varies. 

[20] 

3. Satellites Based Crop Water Stress Detection  

Table 2. Satellites Based Crop Water Stress Detection. 

Satellite Applications Advantages Limitations References 

AMSR-E 

High-efficiency passive 

microwave soil moisture 

analysis with drought 

data collection for daily soil moisture 

measurement with a 12.5 km precision 

Just two files every day, one for the 

day and one for the night 
[21] 

AMSR-2 

Analysis of soil water-re-

lated parameters, global 

observation of soil mois-

ture (from the soil sur-

face to a few centimeters 

depth), 

More than 99% correct in capturing 

data both during the day and at 

night/Good resolution and accuracy of 

data collecting 

only functions in certain frequency 

ranges, including 6.925, 7.3, 10.65, 

18.7, 23.8, 36.5, and 89.0 GHz 

[22] 

NISAR 

Global soil moisture 

maps with a time hori-

zon of 6 to 12 days 

acquire soil moisture data in all 

weather conditions and with a precise 

resolution of 3–10 m. 

Product assessment in 12–24 h [23] 

Tandem-L worldwide soil moisture 

provides extremely accurate measured 

data with millimeter-level accuracy 

and excellent resolution between 20 m 

and four km. 

a significant premium over conven-

tional satellite systems. 
[24] 

Sentinel-1 Dynamics observation 
With a precision resolution of 5 to 20 

m, field determination is less precise. 

Easy to create new systems, incorpo-

rating sensor structures and applica-

tion development models 

[25] 

SMAP 
Analyze the vegetation 

status and soil surface. 

high likelihood of mission failure with 

a 9 km precise resolution 

SSM is captured by passive sensors 

for roughly 36 km. 
[26] 

4. Crop Water Stress Detection Using Spectral Indices 

Table 3. Crop Water Stress Detection Using Spectral Indices. 

Reflectance Indices Formula  Plant Stress Indicators References 

Photochemical Reflectance Index (PRI) 
 

stomatal conductance and 

chlorophyll fluorescence. 
[27] 

Normalized Photochemical 

Reflectance Index (NPRI)  

stomatal conductance and 

chlorophyll fluorescence. 
[28] 

Normalized Difference Vegetation  

Index (NDVI)  

Leaf water potential and 

stomatal conductance 
[29] 

Renormalized Difference 

Vegetation Index (RDVI)  

Leaf water potential and 

stomatal conductance 
[30] 

Transformed Chlorophyll  

Absorption in Reflectance Index (TCARI)  
Leaf water potential and 

stomatal conductance 
[31] 

Optimized Soil Adjusted  

Vegetation Index (OSAVI)  

Leaf water potential and 

stomatal conductance 
[31] 
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Normalized Difference Water Index (NDWI) 
 

Leaf water potential  [32] 

Simple Ratio Water Index (SRWI) 
 

Leaf water potential  [33] 

Water Index (WI) 
 

Leaf water potential [33] 

5. Crop Water Stress Detection Using the Multispectral Sensing Systems 

Table 4. Crop Water Stress Detection Using the Multispectral Sensing Systems. 

Multispectral Sensing Systems Description Advantages References 

UAV remote MS sensing system 

AIRPHEN Multispectral 

Camera with a lens of 8 mm 

focal length, 1280 × 960 pixels, 

and spectral resolution 10 nm 

High-resolution camera, precise CWS 

detection, low cost, cheap, effective, and 

available with RGB color bands 

[34,35] 

Spaceborne MS sensing system 

Landsat, Orb view, World 

view, IKONOS, Quick bird 

SPOT-5 

To figure out agricultural water stress, 

multispectral high-resolution data 

should be collected. This will give us 

entire crop water stress temporal 

features. 

[36,37] 

6. Future Directions 

Remote sensing technologies can be used to find target water stress. Digital imaging 

approaches are used for leaf & canopy phenotypic categorization to detect crop losses in 

addition to applications like crop growth evaluation, irrigation, and crop losses. Using 

information from digital photography, measure water stress. The most recent methods of 

crop water stress assessment using digital pictures from remote sensing have shown no-

table results. Most of the studies showed three degrees of agricultural water stress: mini-

mal stress (optimum moisture), medium stress (mild drought stress), and severe stress 

(drought stress). With accuracy ranging from 83 to 99%, these methods produced encour-

aging findings for the estimate of agricultural water stress. Machine learning is crucial for 

raising the calibers and effectiveness of systems. For the accurate evaluation of crop water 

stress, a microcontroller-based signal processor (MSP430) integrates soil and ambient sen-

sors. A dependable resource for examining crop water levels and soil water stress factors 

is an independent wireless sensor system made up of a gateway plus a wireless sensory 

node. 

7. Conclusions 

Traditional methods, like measuring soil moisture, have drawbacks in terms of sen-

sor costs, installations, and difficulty obtaining estimates. Plant-based estimates are more 

dependable and accurate. There are significant relationships between PRI and NDVI and 

attributes like LWP, stomatal conductance, crop efficiency, and stem water potential. Crop 

water stress evaluation is a technical and intricate process in and of itself. Our study sug-

gests new techniques that bring together farmers, researchers, and tech developers. Nar-

row-band optical indices could be used to plan irrigation for high-value vegetable crops 

in water-stressed countries. Conventional irrigation scheduling methods use measure-

ments of soil moisture, weather, and physiological assessments of plant response. The 

method is ineffective because it is difficult to get measurements, especially for varied soil 

and crop canopies. Narrow-band optical indices could be used to plan irrigation for high-

value vegetable crops in water-stressed countries. This assessment makes remote sensing 

system recommendations and sets the path for creating new facilities that assess a 
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system’s effectiveness in diverse environmental scenarios. Such as multispectral/hyper-

spectral & thermal sensing systems based on remote-sensing features.  
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