

Proceeding Paper

Estimation of Remotely Sensed Actual Evapotranspiration in Water-Limited Mediterranean Agroecosystems for Monitoring Crop (cotton) Water Requirements ⁺

Marios Spiliotopoulos ^{1,*}, Nicolas Alpanakis ¹, George A. Tziatzios ¹, Ioannis Faraslis ¹, Pantelis Sidiropoulos ¹, Stavros Sakellariou ¹, George Karoutsos ², Nicolas R. Dalezios ¹ and Nicholas Dercas ³

- ¹ University of Thessaly; email1@email.com (N.A.); email2@email.com (G.A.T.); email3@email.com (I.F.); email4@email.com (P.S.); email5@email.com (S.S.); email6@email.com (N.R.D.)
- ² General Aviation Applications "3D" S.A., 2 Skiathou str, 54646 Thessaloniki, Greece; info@3dsa.gr
- ³ Agricultural University of Athens; ndercas1@aua.gr
- * Correspondence: spilioto@uth.gr
- + Presented at the 7th International Electronic Conference on Water Sciences, 15–30 March 2023; Available online: https://ecws-7.sciforum.net.

Abstract: The role of effective irrigation management for optimal food production is well recognized and can be partially solved through the improvement of water use efficiency (WUE). To control the adequacy of the water applied to actual crop requirements, net irrigation water requirements (NIWR) are needed. The computation of NIWR is based on the estimation of crop water requirements (CWR) and soil water balance, where crop evapotranspiration (ET_c) is the main component. Earth observation (EO) using remote sensing (RS) has already become an important tool for the quantification and the detection of the spatial and temporal distribution and variability of several environmental variables at different scales. Remotely sensed models are currently considered suitable for crop water use estimation at field, as well as regional scales.

Keywords: ET; crop water requirements; sentinel imagery; cotton

1. Introduction

Currently, the most prevailing group of EO methodologies for the estimation of ET_c is the Energy Balance (EB) algorithms and more specifically the residual methods [1]. Remotely sensed EB algorithms convert satellite sensed radiances into land surface characteristics, such as albedo, leaf area index, vegetation indices, surface roughness, surface emissivity and surface temperature to estimate ET as a "residual" of the land surface energy balance equation [2,3]. Most recent EB models differ mainly in how Sensible Heat (H) is estimated [1]. These models include the Two Source Model (TSM), where the energy balance of soil and vegetation are modeled separately and then combined to estimate total LE, the Surface Energy Balance Algorithm for Land (SEBAL) and the Mapping Evapotranspiration with Internalized Calibration (METRIC) that use hot and cold pixels within the satellite images to develop an empirical temperature difference equation, and the Surface Energy Balance Index (SEBI) based on the contrast between wet and dry areas [4–6]. Other variations of SEBI include the Simplified Surface Energy Balance Index (S-SEBI), and the Surface Energy Balance System (SEBS) [7].

In this paper, an actual daily evapotranspiration (ET_a) computation methodology is presented, based on a contribution to a European-funded research project, namely "HubIS". Obtaining useful spatial information and describing difficult physical processes through remote sensing is important for developing better agricultural practices. The applied approach has been first operated by the European Space Agency (ESA), using the

Citation: Spiliotopoulos, M.; Alpanakis, N.; Tziatzios, G.A.; Faraslis, I.; Sidiropoulos, P.; Sakellariou, S.; Karoutsos, G.; Dalezios, N.R.; Dercas, N. Estimation of Remotely Sensed Actual Evapotranspiration in Water-Limited Mediterranean Agroecosystems for Monitoring Crop (cotton) Water Requirements. *Environ. Sci. Proc.* **2023**, *4*, x. https://doi.org/10.3390/xxxxx

Academic Editor(s):

Published: 15 March 2023

Copyright: © 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/). Sen-ET plugin and the proposed methodology is an improvement of ESA's method. The proposed methodology framework consists of seventeen (17) separate steps having as the outcome the actual daily evapotranspiration flows estimation at a 20 × 20 m spatial resolution. The proposed methodology is applied in cotton in Thessaly Greece for the 2021 growing season. The results are very satisfactory and indicate the suitability of Sen-ET SNAP software to estimate daily actual evapotranspiration, as well as its spatial variability throughout the crop. The methodology can be applied for effective irrigation management in data-scarce rural regions.

2. Materials and Methods-Study Area

In this study, a combination of Sentinel-2 and Sentinel-3 images for daily crop evapotranspiration estimation is presented and applied in cotton fields in Thessaly Greece, which is considered as a water-limited Mediterranean agricultural area. The simulation program used is the Sen-ET SNAP software. The plug-in uses satellite images from Sentinel 2 and Sentinel 3 and meteorological data from the Weather Research and Forecast (WRF) model. The purpose of the Sen-ET SNAP plugin is to enable estimation of daily actual evapotranspiration (and other land-surface energy fluxes) at field scale.

The initial version of Sen-ET used in SNAP, developed by ESA, uses the two-source energy balance (TSEB) model [10] with Sentinel-2, Sentinel-3 and meteorological data from ECMWF (ESA, 2020) [8,9]. The adopted methodology in the present approach follows the initial 17 steps based on the TSEB model (Table 1). However, a modification of the initial Sen-ET SNAP used at the present study takes advantage of meteorological data taken from the WRF model, instead of ECMWF. This approach stands as a modification and improvement from the original plug-in. Real-time data produced by the WRF are inserted into the proposed methodology giving, finally, ET_a values in mm/day with a spatial resolution of 20 m × 20 m.

Table 1. The 17 steps created for the operation of Sen-ET.

Steps	Procedures
1	Download Sentinel images
2	Preprocessing of Sentinel 2
3	Creation of a Digital Elevation Model (DEM)
4	Creation of a land use map of the study area
5	Leaf reflection and transmission assessment based on the chlorophyll and water content of the plants
6	Estimation of fraction of green vegetation
7	Production of land use/land cover maps
8	Aerodynamic roughness assessment
9	Pre-processing and downscaling of Sentinel -3 data.
10	Warp to Template—Resampling into a standard image using GDAL Warp
11	Sharpen Land Surface Temperature
12	Download WRF meteorological data by 3D S.A partner
13	WRF meteorological data preparation based on the High-Resolution Digital Elevation Model (DEM) of the
	study area
14	Long-wave irradiance estimation based on WRF meteorological data
15	Estimation of net shortwave radiation based on WRF meteorological data and biophysical parameters
16	Estimation of energy fluxes of the land surface
17	Estimation of daily evapotranspiration

The region of Thessaly which is the most cultivated region in Greece according to its population stands as the study area (Figure 1). The annual water consumption is about 1.422 hm³, with 92%, i.e., approximately 1305.5 hm³, used to meet the irrigation needs. Almost 500,000 ha are cultivated in Thessaly, while almost 250,000 are irrigated. 76% of

irrigation amounts comes from groundwater systems through legal or illegal drilling, while only 24% comes from surface water systems [9] The physical condition of the groundwater systems of Thessaly is not satisfactory both in quantitative and quality terms [9]. In the present study seven (7) experimental plots participate in the research program "HubIS" and are analyzed and processed.

Figure 1. Study area.

3. Results

Figure 2 shows the variations of actual daily ET_a values for cotton during the irrigation period when images from Sentinel 2 and Sentinel 3 were available.

Figure 2. Variation of the actual daily ET_a for cottons plot. Comparison between Hubis methodology and the farmer practices.

Figure 3 shows the spatial distribution of the actual daily ET_a values for the cultivation of cotton for the growing season, when images from Sentinel 2 and Sentinel 3 were available. The plots are divided into "traditional" (farmer practices) and "experimental" (Hubis practices). No other explanations are needed for the current study, because further results between these plots are expected in the future during the implementation of the program. The daily ETa values (farmer practices) range from 0 mm (recorded in February) to a maximum of 10 mm (recorded in early August). Figure depicts only a part of the available image dates due to width issues. Additionally, Figure 3 presents the spatial variation of the daily ETa values for the cultivation of cotton (Hubis practises), for the entire period that satellite images were available. The daily ETa values range from min 0 mm (recorded in February 2021) to a max of 9.5 mm at the beginning of August 2021.

Figure 3. Spatial distribution examples of the actual daily ETa for the cultivation of cotton (Farmer practices) and cotton (Hubis).

4. Summary

In this study, a methodology developed by the University of Thessaly, Greece, is presented for the calculation of actual evapotranspiration values using Sentinel imagery. This methodology suggests a modification and improvement of the initial ESA's SEN-ET methodology. SEN_ET methodology is supported by SNAP software utilizing Sentinel 2 and Sentinel 3 satellite imagery as well as meteorological data from the Weather Forecast and Research (WRF) model to estimate daily ET_a values. The results taken under the experiment slots showed actual evapotranspiration values very close to the real values needed for the irrigation needs of each crop.

Author Contributions: Conceptualization, N.A., G.A.T. and I.F.; methodology, I.F.; software, N.A. and G.A.T.; validation, M.S., S.S. and P.S.; formal analysis, P.S.; investigation, G.K.; resources, G.K.; data curation, G.K.; writing—original draft preparation, M.S. and N.A.; writing—review and editing, M.S.; visualization, N.R.D. and N.D.; supervision, N.R.D. and N.D.; project administration, S.S. and N.R.D.; funding acquisition, N.R.D. and N.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the project HubIS under the PRIMA 2019 program of the European Commission (HORIZON EUROPE).

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge the European Space Agency for the supported data and materials.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Gowda, P.H.; Chávez, J.L.; Howell, T.A.; Marek, T.H.; New, L.L. Surface Energy Balance Based Evapotranspiration Mapping in the Texas High Plains. Sensors 2008, 8, 5186–5201.
- Bastiaanssen, G.M.W. SEBAL-based sensible and latent heat fluxes in the irrigated GedizBasin, Turkey. J. Hydrol. 2000, 229, 87– 100.
- 3. Calera, A.; Campos, I.; Osann, A.; D'Urso, G.; Menenti, M.; 2017. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users. *Sensors* 2017, 17, 1104.
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M.. A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. J. Hydrol. 1998, 212, 198–212. https://doi.org/10.1016/S0022-1694(98)00253-4.
- 5. Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.; Roerink, G.J.; van der Wal, T. The Surface Energy Balance Algorithm for Land (SEBAL): Part 2 validation. *J. Hydrol.* **1998**, *212–213*, 213–229.
- Allen, R.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. https://doi.org/10.1061/(asce)0733-9437(2007)133:4(380).
- Roerink, G.J.; Su, Z.; Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. *Phys. Chem. Earth Part B Hydrol. Ocean. Atmos.* 2000, 25, 147–157. https://doi.org/10.1016/S1464-1909 (99)00128-8.
- 8. ESA. 2020, User Manual for SEN-ET SNAP Plugin, V1.1.0; ESA: Paris, France, 2020; 37p.
- Alpanakis, N.; Tziatzios, G.; Faraslis, I.; Spiliotopoulos, M.; Sidiropoulos, P.; Sakellariou, S.; Blanta, A.; Brisimis, V.; Dalezios, N.; Dercas, N. Modeling and Estimation of Actual Evapotranspiration in 3 Mediterranean agricultural areas in France, Greece, and Portugal by the aspect of the Sentinel 2 and 3 observations. In Proceedings of the 2nd AgroEcoInfo, Volos, Greece, 30 June– 1 July 2022; ISBN: 978-618-84403-8-8.
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. *Agric. For. Meteorol.* 1995, 77, 263–293. https://doi.org/10.1016/0168-1923(95)02265-Y.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.