

TITLE

Integrated Water Resource Management by using Water Evaluation And Planning Model: A case study of Lower Bari Doab Canal, Pakistan

> Presented by: Hira Khanam M.Sc.(Hons.)Agricultural Engineering Dept. of Irrigation and Drainage. University of Agriculture , Faisalabad.

Outlines o Title **o** Introduction **o** Problem statement • Objectives Methodology **o** Results and Discussion • Conclusion • Recommendations

INTRODUCTION

- Water is one of the most essential resources on Earth and is fundamental for life to exist. It is among the top 5 crisis of the world.
- Accessibility of fresh water is declining globally due to environmental and climate changes, industrialization, contamination and other anthropogenic activities
- For Integrated water resource management ,water managers and the policy mak ers requires different tools. Many Simulation models are being adopted for water management in large irrigation schemes , among them is WEAP.
- WEAP is provided with the modeling frame work with an advanced approach which includes water demand priority and supply preference and can use different scenarios for integrated water resource management.

PROBLEM STATEMENT

- Pakistan is also among the countries which are facing the threat of water scarcity.
- The distribution system of Pakistan is purely supply based and does not consider the Crop Water Requirement.
- Water table is declining and the cost of pumping of ground water is also increasing. Rapid Ground water pumping is also causing the saline water intrusion
- Change in climate is affecting the water resources enormously throughout the world and in Pakistan.
- The inadequate political governance and inappropriate policies also causing the mismanagement in the valuable resource of water

OBJECTIVES

- To investigate the current water allocation scenario in Lower Bari Doab Canal command area.
- To evaluate the water allocation plans under different possible future scenarios

METHODOLOGY

WEAP MODEL DISCRIPTION:

- WEAP was originally developed by Stockholm Environment Institute in Boston, USA (SEI-US)
- WEAP is a software tool for integrated water resources planning.
- Steps include in WEAP application:

STUDY AREA

0

- The study area is located in the Bari Doab (the area between the rivers Ravi and Sutlej) and comprises the command of LBDC.
- The LBDC serves a cultivable command area of about 1.7 million acres in Districts Kasur, Okara , Sahiwal and Khanewal.

DATA USED IN WEAP MODEL, SOURCES AND FORMAT

Data	Sources	Time
Climatic data	Pakistan Meteorological dept., Monthly	Daily, Monthly
	and global assembled and satellite data	
	sets	
Flows of LBDC	Irrigation department, GOP	Daily
Land use data	MODIS	Yearly
Soil data	World Soil map.	Daily Discharge
		data
Population (District wise),	Pakistan Bureau of Statistics, World B	Yearly record
Water consumption, Grow	ank Data	
th rate		

Districts	Distributaries laying within in a district
Okara	3R, 2RA, 2R, 1RB, 1RA, 1R, Joya, Gogera Baloki, Jaandraka, Koh ala, Chachak and Marala, Guba Dich, 1L Balloki, 1AL Feeder, 4L, Thatti Kalsan, Khokhar, Kplot
Sahiwal	14L, 12L, 11L, 13L, 13AL, 12L, 9L, 9AL, Bahab,6R Sahiwal,5R5 AR.4R,4L,5L Gamber, 10LNew, 9AL, Northern buffer, Southern b uffer
Khanewal	15L Khanewal, 8AR Khanewal, 8R,16L, 8BR, 9R
Kasur	Halla, Alpha Balloki, Gurke Balloki, Gogera1, Ojla, Ghumanki

Population and demand sites

		Demand sites	Demand Priority	
Districts	Population	Domestic Demand of Kasur	1	
Vague	792045	Kasur Rabi	1	
Kasur	/92043	Kasur Kharif	1	
Okara	2915324	Domestic Demand of Okara	2	
	2J1JJ27	Okara Rabi	2	
Sahiwal	2414994	Okara Kharif	2	
		Domestic Demand of Sahiwal	3	
Khanewal	730928	Sahiwal Rabi	3	
		Sahiwal Kharif	3	
Current account year	2015	Domestic Demand of Khanewal	4	
Last year of scenarios 2040		Khanewal Rabi	4	
		Khanewal Kahrif	4	

SOIL DATA

	Sr. no.	SNUM	Soil Types
	1	3736	Clay Loam
	2	3878	Loam
Legend SNUM 3736 3878 3883	3	3883	Clay Loam
0 12.5 25 50 Miles			

Land Use data for the Rabi and Kharif Season

LAND USE FOR THE DISTRICTS of Okara and Kasur

Kharif Land	Area	Rabi Land			, ,		Area(Hectare
use	(Hectares)	use	(Hectares)	Use	tares)	d Use	s)
Rainfed	18462.5	Wheat	89537.5	Rainfed	525	Wheat	7781.25
Orchards	20087.5	Orchards	13618.75	Kallineu	525	vv ncat	1101.23
Cotton	41225	Fodder	9406.25	Orchards	738	Orchards	206.25
Fodder	743.75	Rainfed	5675	Cotton	2538	Fodder	943.75
Sugarcane	10093.75			Rice	4294	Rainfed	106.25
Rice	5987.5				119	Rainiea	100.23

LAND USE FOR THE DISTRICTS of Sahiwal and Khanewal

Kharif Land	Area	Rabi Land	Area	Kharif Land	Area	Rabi Land	Area
Use	(Hectares)	use	(Hectares)	use	(Hectares)	use	(Hectares)
				Rain fed	725.96313	Wheat	64243.75
Rainfed	48150	Wheat	372431.25			Orchard	7000
				Fodder	50.024375		
Fodder	3162.5	Orchards	39950	Orchards	4056.4819	Fodder	10418.75
Orchards	44006.25	Fodder	52450	Sugarcane	650.15875	Rain fed	3162.5
Sugarcane	18568.75	Rainfed	17806	Cotton	12077.6		
				Rice	6219.4869		

Figure 3.18 Scenarios built in the model

Results:

For the current account year (2015):

Results:

FOR CURRENT ACCOUNT YEAR (2015):

DOMESTIC WATER DEMAND

AGRICULTURE WATER DEMAND

Unmet demand in 2015:

Domestic and Agriculture water demand for the year 2016,2017,2018

Unmet demand for Sahiwal and Khanewal

Water demand in response to Higher and Medium population growth rate:

Medium Population Growth Rate

Domestic demand of Sahiwal

Lower population growth rate and Higher living standard scenario:

Domestic Demand of KasurDomestic Demand of okara

Domestic Demand of khanewal
Domestic demand of Sahiwal

Domestic Demand of Kasur
Domestic Demand of okara

Domestic Demand of khanewalDomestic demand of Sahiwal

Conclusion:

- Water demand is increasing with increasing population, economic growth, urbanization, Industrialization and Climate change.
- Water demand for the Sahiwal district was found to be maximum because it has the largest land use area of crops
- Unmet demand was found to be the highest for the districts of Sahiwal and Khanewal.
- WEAP is user friendly and can be used easily for the evaluation of di fferent water management strategies and policies before implementation
- The constraints faced includes unavailability of institutional support, sufficient and reliable information and political conflicts.

Recommendations

- Water should be supplied on demand based rather than supply based
- Treated waste water can be used for irrigation
- Water efficient crops should be used in the district of Sahiwal and Khanewal.
- The domestic demand can be reduced by maintaining a low
- population growth rate and Consumer education would improve the water use and practices
- WEAP is user friendly and can be used for determining the impact of different water management strategies and policies.

