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Introduction

~

» Chlorine is one of the most commonly used disinfectants for
water disinfection.

Water Disinfection

)

* Bulk decay: Due to the reaction of chlorine with the substances available in the bulk
water

e Wall Decay: Related to the reaction of the chlorine with the pipeline walls and the

Chlorine Decay biofilms and corrosion products which are attached to them

)

« If the initial chlorine dosing concentration is too low: There may not be a residual\
left at the end of the distribution system to protect water against reoccurrence of any
potential contamination

AL EEELE < I the dosing rate is too high: 1- Customer complaints, 2- Corrosion of the pipe

to compensate its : . . .
decay network, 3- Formation of carcinogenic by-products

)
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< Introduction

~

“*How to determine the right amount of chlorine that needs to
be added to water before it leaves the treatment plant?

J
~
 Very time and resource consuming and thus is
Serform trials cost prohibitive.
frequently
J
~

» The most cost-effective method to achieve the right
MESEEE  chlorination regime using chlorine decay models

decay within
distribution system %
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< The trade-off between model complexity and performance:

» More parameters can improve accuracy, but increase complexity and overfitting risk

» Overfitting leads to poor performance on new, unseen data

» A higher number of parameters may not necessarily lead to better performance on new data

» Additional parameters may fit to noise or random fluctuations, rather than underlying trends

» More complex models may not be practical or reliable for predicting new data

» Carefully consider the trade-off when choosing a model for a particular application

< Underfitting | Overfitting =2

O First Order Model (FOM)
o>~ Parallel First Order Model (PEOM)
Second Order Model (SOM)
Parallel Second Order Model (PSOM)

Besti Fit

Error

Trginin Error

x9]dwo? 03 ajdwis woi-

Model "complexity”

Making a Balance

Complexity .}\ ‘ .;\ Performance

\ )
|

Introducing new version of chlorine bulk decay
Kinetic models by adding one additional
parameter as “chlorine demand”
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Rates of » Measuring in laboratory

disinfectant decay IAALLULLEL They would not be
Kinetic robust to expected

model -
Hydraulic —— : changes in source
model Network * Only in time period of o

hydraulics Interest

Integration
system

Real-time water quality

model
-Production flows at all treatment sources -Type of source water
-Hydraulic heads at all treatment source points of entry -Initial chlorine concentration (ICC)
-Distribution storage tank or reservoir levels -Temperature
-Transmission and distribution control valve status or setting -pH \
-Individual booster or high service pump status (on/off) -NOM / \
-Individual booster or high service VFD pump speed feedback -Age of infrastructure 7

- etc. - etc.
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SOUI|INO Yoieoasay

Modifying currently existing
decay models from first order to
parallel second order model

Predicting bulk decay
coefficients based on water
guality parameters through an
analytical process instead of
running bulk decay experiments
In a laboratory environment

Implementation plan in real

water distribution networks

Introducing a new parameter in the equations as “Chlorine
Demand”

Were assessed against their accuracy in explaining chlorine bulk
decay behaviour in an attempt to correct the flaws of existing
models

Regarded as a noteworthy achievement that will add to the novelty
of the current study

To robust the predicting chlorine decay model to cover expected
changes in source water, demands, or system operation over the
ensuing weeks, months, or seasons

The system assigns new values for the rates for each water sample
with different water quality properties using a trained machine
learning model

In this proposed methodology the system automatically updates
the values for decay rate coefficients based on the changes in water
quality parameters in an online manner
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1. Sample Preparation:

S1 S4 S5 S7
S2 S6
Distribution Networlk 83
Service Reservoir 1 Waterwork Station Distribution Netwaork
E 8/9/2020 9 am 11 am 2 pm 4pm
(27°C) (28°C) (28.6°C) (29.2°C)
F) am am (29. pm pm
5] > 22/9/2020 9 10 am (29.9°C) 2 3
// (27.2°C) (31.2°C) (30.4°C)
Household
J— // 13/10/2020 9 am 10 am 2 pm 3pm
(27.0°C) (30.3°C) (31.3°C) (30.6°C)
Service Reserusir 2 26/1/2021 9:40 am 10:20 am Under 2 pm
(27.5°C) (30.0°C) maintenance (30.0°C)
9/2/2021 9:30 am 10:40 am Under 2:20 pm
(28.2°C) (28.9°C) maintenance (28.9°C)
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2. Water Quality Parameter Measurements

et nsicume

TRC mg/L Cl, Method 867 (DPD method)
NH,CI mg/L Cl, Method 10171 (Indophenol method)
TOC mg/L TOC analyzer (Shimadzu TOC-L)
pH / Temperature No unit / °C pH meter (Horiba Scientific pH1100)
UV254 cm? HACH Spectrophotometer (DR6000)
Total NH,4 mg/L NH,—N HACH Spectrophotometer (DR6000)
Free NH, mg/L NH;—N HACH Spectrophotometer (DR6000)
- a.u. Fluorescence Spectrophotometer (Agilent
Ex 365 Em 480 Technologies Cary Eclipse)

¢ In this study the time intervals that were selected to measure the above-mentioned water quality
parameters are 1h, 2h, 4h, 8h, 12h, 24h, 48h, 72h, 96h, and 168h after collection time
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3. Modified Kinetic Bulk Decay Models
wosel [ongmltmaion  [wedfedmumin | oesiniononnewporamess__

First OILIYE Cl(t) = Cly x e k*t CI(t) = TCDy x e kaXt 4 (Cl, — TCDy) TCDy: Initial Total Chlorine demand
Model (FOM) Kq: First Order decay rate associated

with initial total chlorine demand

Parallel First Cl(t) = f(Cly,t) = Cly X x X e K1Xt 4 Cl; x (1 — x) x e~keXxt Cl(t) = TCDy X x X eX1aXt +TCDy x (1 — x)eXed*t + (Cl, — TCD,) Kyq: First order fast reaction rate
Order Model constant of the chlorine decay
(PFOM) associated with TCD, X x

K,q: First order slow reaction rate
constant of the chlorine decay

associated with TCD, X (1 — x)

Second Order K4y Second order decay rate

Model (SOM Celp ~ Ca TCDo — Ca, iated with initial total chlori
odel ( ) Ca® = C g g Cl(t) = + (Cly — TCDy) associated with initial total chlorine

- — A — —
1- Ccilo x (G =Cap) xlxt 1- TC].())O x =(TCPo=Cao) xka xt demand (TCD,) and initial notional
0
reactant (Ca,)

Parallel Second ClyZ (1 — Ry) Clo (1 = Z)(1 - Ry) TCDyZ (1 — Ry) TCDy (1 —Z)(1 — R,) kg41: Second order fast reaction rate
Order  Model am = 1— Ry x e-(-R)xkixt " 7 _ R, x e=(1-Rp)xkpxt cw = 1— R; x e"(-R)xkaixt ' 1_ R, x e—(l—Rz)xkdet+ (Clo —TCDo) constant of the chlorine decay
(PSOM) associated with TCD, X Z and (1 —

R1)
kg4,: Second order slow reaction rate
constant of the chlorine decay

associated with TCD, X (1 —Z) and
(1-Ryp)
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4. Responsive Kinetic Model This technique could increase the number of datasets from 31 to 217
<<lnputs>> <<Qutput>> Time | Total Total | Free
™ / First Order Bulk- ) | o, | nHel | Toc | pH | uvesa | NH, | NH, | foOM | Temp K, K, cl,
1 '\ Decay Rate (k) ./
- Nh2al 0 | 217 | 197 | 1509 [801] 0025 | 0562 | 0.08 | 8851 27 0.001658 | 0.010020 0.5622
|
. Toc 1 | 216 | 205 | 1491 [801] 0026 | 0533 | 009 | 11162 | 27 0.001625 | 0.009649 0.5605
|
e oS \ 5 | 215 | 199 | 1272 [7.94] 0026 | 0551 | 0.06 | 1157 27 0.001638 | 0.010832 0.5258
Gaussian Select the best
| Apply 20-Fold
e eross validarion process ~——  model out of 20 9 | 214 2 1.047 | 7.79 | 0.021 | 0.465 | 0.005 | 9.442 27 0.001649 | 0.011887 0.4996
€ ! : Regression constructed models
Cwase < TTTTTTT - (GPR) 21 | 204 | 189 | 1352 [765] 0025 | 0537 | 011 | 10843 [ 27 0.001310 | 0.007489 0.4938
- 0.014377
\mua
o 69 | 19 173 [ 1021 | 741 0016 [ 0515 | 011 | 9.061 27 0001103 | 0.025391 0.1972
Q’“"’ T )
I A | Presentthe 93 | 181 | 169 | 0944 [7.38| 0.016 | 0.505 | 0.005 | 8.915 27
w Hyperparameter | prediction 1
------ e Ontimization " results for the 165 | 172 | 144 ] 0854|729 0015 | 0512 | 0005 | 8114 | 27
. Optimition o testset
""""""" o6 8.Sep.2020-Murnane SR1
. T T T
Fold 19 Fold 20

o
2,

L

1

!ll\llll |I|||I||‘II|
. ——
Prediction Statistics

Complete Data

O
[N

X
Initial Total Chlorine Demand (mg/L)
o
w

o
o

III. N III

@
R

20

Final Measure: 0
ot reformnce € oh 1h 5h

9h 21h
Time After Collection (h)

45h 69h
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formation of DBP to comply with the requirements

1. Data Visualization of Key Water Quality Parameters v The level of total chlorine concentration in this part
of distribution network is in an acceptable range

JBad @ | fEmm ad g 6] o 15 @] 2o recommended by many organizations such as

=g o ﬂ : g Zus B E ] PR g Eg [5 D American Water Works Association (AWWA).

£ = S

g 1 8 So.s B v" TOC levels lower than 2 mg/L is showing the full
os E] “os Eﬁ . consistency with regulations that can reduce the

on

L LL L 043’ LLLS L L LLLS L L °<a3’ s

ST EEy ST S FEEY for a safe tap water delivery

8.6 pa ©  08.5ep.2020 ®  08.5ep.2020 ®  08.Sep.2020 . . . . .

sal | | @ | ° zsm @ | : mswmm ® | - zwm v The total residual chlorine is entirely contributed by

+ ®  26.Jan.2021 ~.0.025 e 26.Jan.2021 = ®  26.Jan.2021 - -
8.2 o 09.Feb.2021 E B o 09.Feb.2021 Eo_s ;O o 09.Feb.2021 monochloramlnes’ and there IS almost no
z, Job ﬂ 3 00 H [? gos = contribution from free chlorine.

S 503

7.6 > LT k] L. . . . . .

74 0.015 S "oz @ v This indicates that the entire distribution network

0.1

R has optimal chlorine dosage sufficient to oxidise all

N oV oD N & o0 N oV oD N o o0 N oV oD
& \éﬁ&é & #\of‘ ey 04-04;00@ FFFS L g i ) ) )
TS eahy TES O TS ey organic compounds whilst reacting with all free
R R N R ammonia present, leaving the latter remaining to be
() o 22.5ep.2020 N (h)| < 22sep2020 (i) o 22.5ep.2020 I t o
F0.5 o pommw 1 | peamn g | saomame as Close 1o
E ® 09.Feb.2021 E ® 09.Feb.2021 E 31 ® 09.Feb.2021 - -
(= ﬁ 5 s % 0 L [5 [j N g0 @ D D E v The total free ammonia concentration depletes
goos - L L B 8 fzz 1L further down the distribution network, which
0 - .
0 27 reinforces the fact that whatever free chlorine
\‘@i@j’;{’, épio{f g;@i@i@i@io{&@ @%{\@i“‘i&i@if present (residual free chlorine) was used to react
¥ W ©

with ammonia to form monochloramines
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2. Bulk Decay Experiments

<
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08.Sep.2020
22.Sep.2020
13.0ct.2020
26.Jan.2021
09.Feb.2021

+ The bulk decay rate was generally increasing by

moving from MNSR towards Jellico Rd

*Ababu T. Tiruneh, Tesfamariam Y. Debessai, Gabriel C. Bwembya, Stanley J. Nkambule, "A Mathematical Model for Variable Chlorine Decay Rates in Water Distribution Systems", Modelling and Simulation in Engineering, vol. 2019, Article ID

5863905, 11 pages, 2019. https://doi.org/10.1155/2019/5863905

The major reason of this increment in bulk decay rate coefficients can
be explained by the Arrhenius theory (Equation 3-1) due to the increase
in temperature by moving from MNSR towards Jellico Rd and also the
reverse effect of initial chlorine on bulk decay rate as TRC is decreasing
from MNSR to Jellico Rd.

_g*(base—T)
KT - Kbase * (273 + base)*(273+T)

(Equation 3-1)

x10°_

Assumption: Water samples collected in the same
{ day having the same activation coefficients

4 E/R can be estimated for each day by considering
the lowest temperature of the collected samples

1 as the base temperature and estimating the bulk
decay rate of this sample with the lowest

| temperature and also another sample with
different temperature.

R L AR

: P« . :
® 5 5% 0% 6 9%

14
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Results and Discussion

2. Bulk Decay Experiments

+» To explain the variations in activation coefficients (E/R) estimated for 5 different days, the correlation
between E/R with different water quality parameters was calculated

s A parallel Component Analysis (PCA) was carried out to obtain a single variable (component) out of

seven variables for each water quality parameter by which most of the data variability is explained

TRC | NH,CI | TOC |pH UV254 [ TNH, | FNH; | fDOM | Temp
Percentage of data variability explained by each component
Compl | 83.86 | 90.36 89.33 | 73.42 | 83.52 79.48 | 68.25 | 68.00 97.89
Comp2 | 13.44 | 6.89 7.02 |2378 |1045 |16.36 |[16.33 |21.92 |211
Comp3 | 244 | 2.36 314 |[158 |5.60 3.81 10.49 | 6.14 0.00
Comp4 | 0.17 0.38 0.49 1.06 0.42 0.31 4.89 3.91 0.00
Comp5 | 0.08 0.00 0.01 0.16 0.00 0.03 0.05 0.03 0.00

v As can be seen, there is a high correlation between activation coefficients with TRC, NH2CI, TNH3, and temperature
with correlation coefficients equal to 0.6995, 0.7883, 0.9450 and 0.7637, respectively.

TRC

1US01J30D) LOJEANDY

2 & 3 5 § % % 8 %
® o ® @
nvec| @ | @ O [ ) o
w @ 0 @ e
@ @ o o
uv25s4 . o o
| @ C BN )
vl @ | @
oor @
Temp . o
Activation Coefficent| ()

0.8

0.6

104

102

-0.2

-0.4

-0.6

15
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Results and Discussion

¢ The exponential term in the Arrhenius equation implies that the rate constant of a reaction increases exponentially when
E/R decreases.

v"Accordingly, it can be concluded that bulk decay coefficients are inversely proportional to TRC, NH,CI, TNH; as those

water qualities have a significant positive linear correlation with E/R.
However, the significant positive correlation between temperature and E/R is not fundamentally valid as the activation energy is not affected by temperature.

To confirm these results, the Pearson correlation between bulk decay rate coefficients with water quality parameters

\/
0‘0

TRC

were also reported: z
o
§
z c - R b
i 8§ 38 3 § % 2 8 § ¢
oo o ® LN
nHzel| @ o o L BN
Toc| @ o
pH . .
wzsd @ [
™3| @ ( BN
g @
mov @
Temp .

Bulk Decay Rate

0.8

0.6

0.4

-10.2

=-0.2

-0.4

-0.6

-0.8

The results are consistent with the previous results

pH also showed a significant negative correlation with bulk decay rate

coefficient: can be due to the higher concentration of mono-chloramine in the pH levels >7
which is contributing to lower reaction rates of TRC in bulk water.

Temperature also had a significant positive linear correlation with
bulk decay rate as expected.

16



Results and Discussion

3. Modified bulk Decay Kinetic Models

irst Order Model (FOM

Collection

Collection Parallel Second Order Model (PSOM)

igi Modifi
Date Original odified
Original Modified
k MSE R TCD, Ky MSE R
0.0017 0.0014 0.9774 0.5622 0.0100 0.0002 0.9963
MNSR1 z R, R, Ky K, MSE R TCD, z R, R, Kg1 Kg, MSE R
00028 00040 09760 07480 00124 0-0008 09934 0.3646 0.2181 0.3192 0.0105 0.0092 0.0002 0.9962 4.9147 0.5692 0.1177 0.1154 0.0101 0.0101 0.0002 0.9963
MNSR2 08.Sep.2020 MNSR1 ’ : . : : : ’ ’ . . : : : : .
HEa DET AT 06 G SER DETG MINSR2 07929  0.4006 04006 00121 00121  0.0008 0.9928 8.9858 0.5673 0.0863 0.0805 0.0128 0.0125 0.0008 0.9932
MNSR3 MNSR3 05788 28707  0.0873 00011  0.1626  0.0006 0.9901 1.6058 0.7777 2.2945 0.1994 0.0013 0.1691 0.0006 0.9899
0.0072 0.0037 0.9880 1.0662 0.0131 0.0014 0.9939
BTWW BTWW 02261 00000 23667 00027 00055  0.0015 0.9933 18.220 0.5141 0.0586 0.0586 0.0133 0.0135 0.0014 0.9938
0.0132 0.0012 0.9957 1.0180 0.0168 0.0006 0.9977 FCSR1 03632 12680 66334 00073 00029  0.0005 0.9979 4.8686 0.3265 0.0975 0.2779 0.0248 0.0159 0.0005 0.9979
FCSR2 00448 14420 14734 00388 00007  0.0008 0.9967 1.6084 0.0514 12.275 6.3691 0.0344 0.0010 0.0004 0.9982
0.0103 0.0015 0.9951 1.2570 0.0101 0.0014 0.9952
FCSR2 Jellico Rd 03421 13619  1.0100  0.1865 00580  0.0001 0.9981 0.3345 0.2725 13920 1.1259 0.2104 0.0608 0.0001 0.9981
0.0588 0.0008 0.9899 0.3055 0.0825 0.0002 0.9927
Jellico
Rd Collection Second Order Model (SOM)

Date

Original Modified
Collection Parallel First Order Model (PFOM
. . L C k MSE R TCD C k MSE R
Dat Original Modified h® g a0 d
ate
MNSR1 06116 0.0044 0.0002 0.9962 0.6041 20178 0.0004 0.0002 0.9960
k, k, MSE R x ky kg TCD, MSE R
0.8260 0.0058 0.0008 0.9928 0.8004 76.527 0.0001 0.0008 0.9938
MNSR2
0.2637 0.0097 0.0000 0.0002 0.9962 0.4073 0.0100 0.0000 1.3815 0.0002 0.9963
08.Sep.2020 MNSR1 0.7041 0.0046 0.0009 0.9850 0.9293 0.9371 0.0078 0.0009 0.9852
MNSR2 0.6369 0.0000 0.0124 0.0008 0.9934 05347 0.0000 0.0126 1.5997 0.0008 0.9934 MNSR3
15358 0.0067 0.0015 0.9930 11069 76.992 0.0002 0.0014 0.9940
MNSR3 0.9517 0.0015 0.1219 0.0006 0.9898 0.0719 0.1576 0.0038 1.0424 0.0006 0.9902 BTWW
2.0702 0.0080 0.0006 0.9978 1.0586 4.1442 0.0042 0.0005 0.9979
0.7061 0.0131 0.0000 0.0014 0.9939 0.2486 0.0135 0.0129 1.0704 0.0014 0.9940 FCSR1
BTWW
9.8056 0.0011 0.0014 0.9948 16149 16137 0.0059 0.0015 0.9939
0.4257 0.0063 0.0226 0.0005 0.9979 0.5000 0.0176 0.0176 0.9973 0.0006 0.9977 FCSR2
FCSR1
0.0478 05253 0.0095 0.0007 0.9970 0.9880 0.0106 0.0090 1.2208 0.0015 0.9949 . OE OEE UCoL OEEED Oy 0z U228 tous mEBL
FCSR2 Jellico Rd
0.5000 0.0588 0.0588 0.0008 0.9899 0.4659 0.2104 0.0315 03225 0.0001 0.9977

Jellico Rd
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3. Modified bulk Decay Kinetic Models

08.Sep.2020 6 ><10'3
22 I T T T —
@ : ® | N © —
2 1.8 1.8
38.03 %
1.8 16 1.6 5 7]
1.4
5 1'60 50 100 150 200 0 50 100 150 200 1.40 50 100 150 200 28.02 % 23.11%
< 4 33.29%
E 1.5
$ (d) ! ) 1 ®)
E 1 0.5 0.5 ‘I.I’g 3
8 =
g os 0 0
= 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
0.4 o Observed 2
03 @
—PFO
0.2 —MPFO 1
—80
0.1 —MSO
—PSO
% 50 100 150 200 [—_MPSO
Time (h) 0
FOM PFOM SOM PSOM
% As can be seen, generally, all of the models are performing almost v" However; as can be seen, adding only one additional parameter to the original
similar except FOM which is showing lower accuracy in fitting the FOM equation as initial total chlorine demand (TCD,) can considerably
chloring decay data increase its accuracy in MFOM so that the performance of this widely used and

simple model will be similar to other existing models with higher complexity:.

O Although FOM is very simple to use and therefore it has always
been popular, it has not provided a good data fitting for various
chlorine decay data and modelling applications.

18
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4. Responsive Bulk Decay Kinetic Model

Min objective

<<in >>
puts <<Qutput>>
LN / First Order Bulk ™
| . Decay Rate (k) ./
NH2Cl \\
\ \\
] A\ A
A A\
Toc N\ \\
\ \
| N\ A \
oH \\ \ RTINSO, N
N\ i Gaussian Select the best
| ! Apply 20-Fold ;
_— =2 pr model out of 20
Temp cross validation .
i : Regression constructed models
! S ' (GPR)
_ uvasq
| /
TNH3
|
FNH3 SEERREEEEETRAR )
1 . . Presentthe |
1
¢ mom Hyperparameter | prediction |
h s, (Qptimization ! !
i Bayesian P ; results for the :
i Optimization : e test set 4
185 1074 Objective function model Min objective vs. Number of function evaluations B
|
o " |~ Estimated min objective|
s (a) © S o I (b)
> —Model error bars /
S1al Noise error bars /
£ ® Next point /
S * Model minimum feasible /
S12f /
2
8t
=)
o
-]
2081
©
£
Bosr
0.4' = = I = L L I I L I I
10 102 107 0 5 10 15 20 25 30
Sigma Function evaluations

Fold Number Number of Number of Correlation MSE Correlation MSE
datain data in test set coefficient (Training) coefficient (Test)
training set (Training) (Test)
1 207 10 0.99982 5.91E-08 0.75361 2.80E-05
2 206 11 0.99983 5.65E-08 0.98028 5.45E-06
3 206 11 0.99982 6.06E-08 0.98242 1.50E-05
4 206 11 0.99982 5.89E-08 0.96544 9.91E-06
5 206 11 0.99978 7.02E-08 0.85615 6.70E-05
6 206 11 0.99983 5.32E-08 0.96840 2.02E-05
7 206 11 0.99983 5.86E-08 0.59104 2.79E-05
8 206 11 0.99981 6.01E-08 0.87296 8.93E-05
9 206 11 0.99983 5.65E-08 0.97362 3.90E-06
10 206 11 0.99983 5.84E-08 0.90646 1.34E-05
11 206 11 0.99985 5.15E-08 0.99063 3.58E-06
12 206 11 0.99986 4.93E-08 0.98703 4.08E-06
13 206 11 0.99983 5.64E-08 0.95560 2.78E-06
14 206 11 0.99980 6.41E-08 0.96299 2.47E-05
15 206 11 0.99980 6.31E-08 0.83063 7.68E-05
16 206 11 0.99977 7.04E-08 0.74933 1.36E-04
17 206 11 0.99983 5.37E-08 0.97595 1.55E-05
18 206 11 0.99983 5.65E-08 0.99002 1.41E-06
19 207 10 0.99981 5.85E-08 0.94507 3.13E-05
20 207 10 0.97390 7.45E-06 0.66907 1.71E-04
Average 206 11 0.998524 4.28E-07 0.895335 3.74E-05

19
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Results and Discussion

3. Modified bulk Decay Kinetic Models

Test Set

FOM

Predicted-FOM

Optimized-

Predicted-FOM

MAE

MAE

R MAE

0.9783

0.0316

.9587

0.0342

.9588 1 0.0346

0.9910

0.0380

.9754

0.0568

.9761 | 0.0427

0.9729

0.0350

.9597

0.1352

.9560 |1 0.0684

0.9550

0.0269

.9885

0.0280

.9885 10.0278

0.9989

0.0147

.9707

0.0268

.9702 10.0203

0.9591

0.0354

.9873

0.0588

.9874 | 0.0521

0.9831

0.0192

.9518

0.0330

.9518 | 0.0235

0.9945

0.0238

.9800

0.0509

.9797 10.0310

0.9196

0.0262

.9906

0.0304

.9905 ] 0.0296

0.9837

0.0021

.9970

0.1320

.9973 10.1106

0.9639

0.0063

.9694

0.1334

.9667 10.0849

Average

0.9727

0.0236
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& Results and Discussion

4. Implementation in Real Water Distribution Networks

Clo(2)
Cldo(2)
| Keff(2)

Clo(n+1)
Cldo(n+1)
Kefl{n+1)

Ln+1
dn+1

Clo(1)
Cldo(1)
Kefi(1)

Cldo(n)

Clo(n)
+ Keffin)

/
A X4

i=1 Qi*KD1i _ . (Li
Kbi(n+1) = z=21:an gibll Clo (n+1) =3, Cli (V—i) .
i- 1L=Qli*Kb2i NOMzo (n+1) = Y™ , NOM10i (%)

Kb2 (n+1) = 2= , :
(n+1) nZ’iL.l Qi NOM20(n+1)=Z?=1N0M20i(%)
K1 (n+]_)= i=1Ql*Kll
n2?=1 Qi
Y QixK2i
K2 (n+1) = ==L
(+1) ==5m i

> % is a time duration that water segment (i) travels it’s corresponding pipeline
length until the junction.

In this proposed methodology the system automatically updates

the values for the parameters in kinetic model based on the
changes in water quality
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AN

Summery

All water quality parameters in the studied portion of distribution
network were in an optimal range to maintain safe and high-
quality water and preserving drinking water quality from the

point-of-entry to the point-of-use

Bulk decay coefficients were inversely proportional to TRC,
NH,CI, TNH; pH and directly proportional to Temperature

By applying the proposed modification in this study on all four
nominated models, the MSE values were decreased by 38.03%,
28.02%, 23.11%, and 33.29% for FOM, PFOM, SOM and
PSOM, respectively.

A new methodology is used in this study to predict bulk decay
coefficients based on water quality parameters through an
analytical process instead of running bulk decay experiments in a
laboratory environment.
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§ Future Work

Robust Prediction of Disinfectant Degradation in Drinking Water
Distribution Systems Integrating Water Quality Sensing and
Digital Twin Technologies
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